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General Remarks

This release of the User Manual refers directly to VM-USB with firmware A.00. It is
desirable that all users use the most recent firmware as this is not only more likely to have
fewer bugs but is more likely to have enhancements not present in earlier releases.

The only purpose of this manual is a description of the product. It must not be interpreted a
declaration of conformity for this product including the product and software.
W-Ie-Ne-R revises this product and manual without notice. Differences of the description
in manual and product are possible.
W-Ie-Ne-R excludes completely any liability for loss of profits, loss of business, loss of
use or data, interrupt of business, or for indirect, special incidental, or consequential
damages of any kind, even if W-Ie-Ne-R has been advises of the possibility of such
damages arising from any defect or error in this manual or product.
Any use of the product which may influence health of human beings requires the express
written permission of W-Ie-Ne-R.
Products mentioned in this manual are mentioned for identification purposes only. Product
names appearing in this manual may or may not be registered trademarks or copyrights of
their respective companies.
No part of this product, including the product and the software may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any
form by any means with the express written permission of W-Ie-Ne-R.

VM-USB and CC-USB are designed by JTEC Instruments.
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1 GENERAL DESCRIPTION

The VM-USB is an intelligent VME master with high speed USB2 interface. Enhanced
functionality is given by the programmable internal FPGA logic which provides a VME
command sequencer with 4kB stack, 4kB event buffer, and 26kB data buffer. Combined
with the 4 front panel I/O ports, this allows VME operation and data acquisition / buffering
without any PC or USB activity, other than reading out suitably formatted data buffers.
The VM-USB can be also programmed to act as a VME slave with respect to a master crate
controller, while performing master operations on other data acquisition modules. For
example,  it  can be programmed via the VME bus to perform the readout of multiple VME
modules, with data buffering in a 24-kByte FIFO. The master module can then retrieve the
data from the VM-USB alone, at block transfer rates.
All VM-USB logic is controlled by a XC3S400 XILINX Spartan 3 family FPGA. Upon
power-up the FPGA boots from a selected segment (one of four) of flash memory. The
configuration flash memory can be reprogrammed via the USB port, allowing convenient
updates of the firmware. Following an open platform approach, the user can develop his own
FPGA configuration / firmware. The boot sector is selected by setting of a front-panel rotary
switch.

1.1 VM-USB Features (Version 3)
Low-cost 6U single wide VME master with  high speed USB2 interface, auto-
selecting USB2 / USB1, LED’s for speed and FPGA failure/reset..
While operated as a slot-one system controller, performs round-robin and fair bus
arbitration, generates the 16 MHz system clock, and generates BERR response, when
no DTACK appears within 16us from the assertion of data strobes by any controller.
May be programmed to service any or all of the 7 interrupt requests IRQ1-7.
Can generate any of the 7 interrupts when configured with a suitable firmware
2 multiplexed NIM inputs (with LEMO connectors), with a selection of input signal
functionality including 2 32-bit scalers and 2 delay and gate generators.
2 multiplexed NIM outputs (with LEMO connectors), with a selection of source
signals, including the outputs of the 2 delay and gate generators.
4 multiplexed LED’s, with a large selection of diagnostic signals.
Spartan 3 FPGA, XC3S400 based, firmware upgradeable via the USB port from a
host PC.
Built in VME sequencer, 1k x 16 bit VME command stack memory for use in an
autonomous, or list mode data acquisition process. Programmable via USB and/or
VME, depending on the active FPGA firmware.
Open architecture, allowing the user to develop his own FPGA configuration.
Readout triggered either via USB link, by VME interrupt (IRQ1-7), by a start signal
applied to a (programmable) NIM input, programmable timer, or by the completion of
a programmable number of regular events.
26-kByte of pipelined data buffer (FIFO) with programmable level of transfer trigger
Low power consumption, only +5V and +12 V are used.
RESET button and USB RESET via cable disconnect / connect
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1.2 Data Transfer Modes
Single word transfer D8, D16, D24, D32 with the full selection of bus placement,
including unaligned transfers.
Addressing modes A16, A24, A32.
BLT16, BLT32, and MBLT64 block transfer (MBLT64 - read only)..
Enhanced multi-BLT transfers, including MBLT read, of up to 4 Mbytes, both write
(only BLT 16 and BLT 32) and read, with or without auto-increment of individual
BLT addresses.
Autonomous (intelligent) operation pursuant to user-programmed stack. May include
conditional execution of VME commands controlled by the content of a hit register.
May include multiple, conditional command stacks, action triggered by either USB,
VME IRQ, or external signal.
Highly effective triply-pipelined stack execution, virtually with no band-width
penalty for single (as opposed to block transfer) operations.
Long USB2 bulk transfers of up to 4 MByte, both write and read.
Highly customizable.

1.3 VM-USB Front panel

4 user LED’s

Failure LED / USB 1 or 2 indicator

2 user outputs LEMO, NIM / TTL

USB port

2 user inputs LEMO,  NIM/TTL

Firmware selector (1 – 4) :
P1 – P4 for programming
C1 – C4 for use / operation
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1.4  Technical Data

Packaging single wide 6U VME module
Interface USB2 / USB1 auto-detecting / ranging, Connector: USB type B
Inputs 2 user inputs, NIM level , LEMO

Multiplexed functionality (firmware 8504):
Outputs 2  multiplexed  outputs  for  VME,  USB  and  DAQ  signals,  NIM

level, LEMO,  function firmware dependent
Display 4 programmable User LED’s (green, red, green, yellow)

3 USB status LED’s (USB1, USB2, Failure)
VME master modes A16, A24, A32, D8, D16, D24, D32, BLT32, BLT16
System Controller bus arbiter and / or interrupt handler
Firmware Software upgradeable, 4 firmware locations

Selection via 8 position switch (P=program, C=use)
Performance D32 via USB (EASY-VME):   128 kB/s

D32 with data buffering: 9...13MB/s (depending on slave module)
BLT: 10...15MB/s  (depending on slave module)

1.5 Power Consumption

Voltage Max. current Power
+5 V 1.2 A about 8 W
-12 V -80 mA About 1W

1.6 VM_USB Jumper Settings

The VM-USB has a jumper block which enables / disables the system controller function.
In order for VM-USB to function as a VME
system controller (most common use)  the jumpers
have to be set as shown in green in the picture
below!

No System System
controller controller
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Further VM-USB can be used as a VME slave in A32, A24 or A16 mode. In this mode the
base address BADR can be selected via 5 jumpers, which define bits 27-31(A32), 20-
24(A24) or 12-16 (A16) (always 5 most significant bits of the VME address).

Example:

The SLAVE Base Address shown is:

BADR = 0x0400 (A16).

BADR = 0x04 0000 (A24).

BADR = 0x0400 0000 (A32).

In order to function as a VME slave module VM-USB has to be loaded with a VM-
USB_Slave firmware.

1.7 Current Firmware release

Firmware A.00: vmeusb_0A00_031913.bin
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Block diagram

I1 - User NIM input
O1 - User NIM "Busy" output
ACQ - Data Acquisition Control
REG - Register Block
STACKS - VME Command Stacks (2 kBytes)
VME command Gen. - VME command Generator
VME - VME Bus, Including Arbitration
FIFOs - Three-Stage Pipelined FIFO array(22 kBytes)
Master - Control Unit
USB Controller - FX2 CY7C68013 IC
OUT FIFO - USB Out FIFO (Relative to Host)
IN FIFO - USB In FIFO (Relative to Host)
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2 VM-USB AND USB DRIVER INSTALLATION

ATTENTION!!! Observe precautions for handling:

Electrostatic device! Handle only at static safe work stations. Do not touch electronic
components or wiring
The  VME  crate  as  well  as  the  used  PC  have  to  be  on  the  same  electric  potential.  Different
potentials can result in unexpected currents between the VM-USB and connected computer which
can destroy the units.
Do not plug the VC-USB into a VME crate under power. Switch off the VME crate first before
inserting or removing any VME module! For safety reasons the crate should be disconnected
from AC mains.

2.1 Installation for Windows Operating Systems

New installations for 32-bit and 64-bit Windows operating systems should follow the
instructions as shown below. On existing system the 64-bit driver can be installed after
upgrading to LibUSB 1.2.6.0.

To install the driver please perform the following steps:

Part I - DRIVER INSTALLATION

1. Connect the CC-USB  or VM-USB controller to the computer and power it up.
2. Open folder XXUSB_Install_Driver_64bit\libusb-win32-bin-1.2.6.0\bin  and run

inf-wizard.exe . This will identify the connected USB devices and the Wiener
CAMAC or VME controller among them.

3. Select it and generate the xxx.inf file.
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4. Confirm the Device Configuration:

5. When asked, select install. This will install the driver files into proper directories.
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In case a warning appears ignore the warning and install the driver

Part II - LIBRARY and XXUSBwin Windows application

6. Select the folder matching the Windows OS version and open folder  (for Windows
XP /7 /8 use: XXUSBWinX7_Install_32-64bit and install XXUSBwin by running
setup.exe
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7. Click on Installation symbol to start installation:

8. During Installation an “access violation” error message can show up, hit ignore until
all related messages disappear.
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Existing XXUSBWin Installations

In case of an existing older installation replace the old libxxusb.dll with new one. Note
that on 32-bit machines it goes to system32 subdirectory and on 64-bit ones it goes to
wow64.
Replace the old XXUSBWin.exe in the Program File with the new one.

2.2 Installation for Linux Operating Systems

Linux support for the VM_USB is provided through a shared library and header file.  To use
these file simply copy them to an appropriate location, such as /usr/lib for the library and
/usr/include for the header file.   All files are open source. The functions available in the
library are exactly the same as those available at for Windows and are described later in the
manual.   Linux  specific  details  are  located  in  the  readme file  on  the  software  CD that  you
received with your module.

Libusb has permissions restrictions on driver access as well as device special file access
which require root access. For non-root access permission rules have to be modified (see
WIENER CC-USB forum at http://www.wiener-us.com/forums/index.php ).

2.3 Firmware upgrades

The VM-USB is shipped with the latest firmware for the FPGA loaded however, new
versions of it may be available on the web.
Please occasionally check at file.wiener-d.com if newer versions of the CD-ROM containing
firmware, documentation and software are available.

The firmware upgrade is done via USB and can be performed by the help of the XXUSBWin
program.

To upgrade, switch the firmware selector to one of the 4 firmware programming positions
(P1-P4). The red Failure LED will be on. Start the XXUSBWin program which will show the
following error message:

Select “Yes” or go to the Flash ROM Operations page and click program. Open the file of the
latest firmware (xxxxx.bit or xxxxx.bin)
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When done one has to reset the controller or switch the selector switch to the corresponding
run location (C1-C4) and power cycle the crate.
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3 GENERAL ARCHITECTURE OF VM-USB AND ITS USER INTERFACE

Note: The information is this section is relevant only for VM_USB controllers with firmware
ID=0x79100900 or later.  For older firmware version please consider updating or see
Appendix C.
Most of the VM_USB registers take the form of a (virtual) VME address within the
VM_USB and can be communicated with by using VME-like calls to the appropriate virtual
VME address. This offers a degree of uniformity in including various register operations
along with true VME operations in the stacks of VME commands to be executed by VM-
USB operating in autonomous mode. These registers are part of the Internal register file.  The
registers that cannot be communicated with in this way are shown in Table 1.

Table 1. Internal VM)USB registers that aren’t seen as VME space

PA Device
1 Action Register (AR)
4 VME Command Generator (VCG)
- VME Commmand Stacks
- Common Output Buffer

3.1 Action Register (Address = 1 / 0x1)

8-15 4 3 2 1 0
Soft IRQ scaler dump SYSRES clear USB trigger Start/stop

The action register is a special-purpose write-only register controlling the mode of operation
of VM-USB and the generation of internal trigger/reset signals. By its design, it can often be
accessed when other VM-USB actions are under way and, most notably, when VM-USB is
placed in autonomous data acquisition mode.
Bit 0 of the Action Register controls the operating mode of VM-USB and distinguishes
between the interactive and autonomous data acquisition modes. In the interactive mode,
VME commands (individual or a sequence) are performed directly in response to a USB
packet received from the host, while in the data acquisition mode, sequences of VME
commands are executed, pursuant to lists stored in a dedicated VM-USB memory block. Any
of the configurable 8 lists (stacks) is executed upon the receipt of the associated trigger
signal, which may be a signal at the user NIM input I1, detection of a valid VME IRQ, or a
USB trigger of scaler readout. When bit 0 of the Action Register is set, VM-USB is in data
acquisition mode; otherwise it is in interactive mode.
Bit 1 of the Action Register is a write-only toggle bit, such that writing “1” to it generates an
internal signal of 150ns duration, called USB Trigger. This signal can be routed to user NIM
outputs O1 or O2, used as an input to multiplexed internal user devices of VM-USB (such as
delay and gate generators and scalers), and/or displayed on user LEDs.
Bit 2 of the Action Register is a write-only toggle bit, such that writing “1” to it, clears a
number of internal registers. It is intended primarily for use during firmware debugging.
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Bit 3 of the Action Register is a write-only bit linked to the SYSRES line, active when VM-
USB is a slot one controller. When set to “1” VM-USB generates SYSRES. When set to “0”,
the SYSRES is cancelled.
Bit  4  (write-only  toggle)  of  the  action  register  is  used  to  trigger  scaler  readout  when  VM-
USB is in data acquisition mode. This interactive mode of the scaler readout combines with
the two automatic readout modes (event-based and timer-based) on “whichever-comes-first”
basis.

Bits 8 – 15 (write-only toggle) are software Interrupt Request bits associated with stacks 0 –
7, respectively. Writing “1” to one (or more) bits triggers (sequential) execution of the
associated stack(s) when VM-USB is in autonomous data acquisition mode. When more than
one of  these bits is set, scaler stack (ID=1) is executed always the first, when its bit is set.
The remaining stacks are executed in their natural numeric order. Note that bits 9 and 4 have
identical functionality – triggering execution of the scaler stack This redundancy is there to
preserve the backward compatibility with earlier versions of the operating firmware.

3.2 Command Generator / EASY-VME (Address =  4 / 0x4)
The Command Generator decodes lists of coded VME and non-VME commands, submits the
commands for execution in VME or internal cycles, and causes the returned data, if any, to
be stored in a 4kB event memory (FIFO). At the end of the list (end of an event), the content
of the event FIFO is compiled into the main data buffer (up to 26 kB), for a subsequent
transfer to the USB controller. The Command Generator receives coded data either directly
from the host (in interactive or Easy-VME mode), or reads it from the Command Stacks (in
autonomous data acquisition mode). The structure of the list is identical in both modes of
operation and is discussed in detail further below. Integral parts of a VME command are the
VME address modifier (AM), the VME address of a target register/memory location, and
VME data words for “write” operations. Depending on options, such commands may include
additional “configuration” data words. The non-VME commands include those targeting
internal registers of VM-USB, as well as commands instructing the VM-USB to insert
specified marker words into the output data stream and to insert wait states of specified
length between the executions of consecutive commands.

3.3 Command Stacks
Command Stacks (CS) are used to store suitably formatted lists or sequences of VME and
non-VME commands to be performed in response to event trigger signals while VM-USB is
operating in autonomous data acquisition mode of operation (DAQ mode). In this mode of
operation, VM-USB issues VME commands on the VME bus or executes non-VME
commands without triggering bus activity. In the case of VME “read” commands, it reads the
data received in response to them, and buffers the data in a data buffer. Also some non-VME
commands return data, e.g., from internal registers of VM-USB and these data are stored in
the data buffers as well.  When the buffer (up to 26kB) is full, VM-USB dumps its content
into the FIFO of the USB controller IC for the retrieval by the host. It is this data buffering
that allows one to take advantage of the superior band width of the USB2 interface in bulk
transfer mode and to achieve throughputs close to 20  Mbytes/s.
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The VM-USB firmware allows one to define up to 8 stacks, with Stack ID=0-7, within the
allocated memory of 2kBytes = 1kWords. The starting addresses of stacks can be set
arbitrarily. While stacks with ID=2-7 are dedicated to interrupt handling, stacks with ID=0
and 1 are of dual use. Unless the latter stacks are used for interrupt handling, they default to a
regular stack with ID=0, executed upon trigger pulse (signal at NIM I1) and the quasi-
periodic stack with ID=1 (scaler stack).
While in interactive mode, similar command stacks can be executed by the Command
Generator (CG). These stacks are, however, stored in the host PC memory rather than in the
stack memory of VM-USB. Chapter 4.4 provides details about the CS and CG stack structure
and how to store the stack in the VM-USB stack memory. Stack instructions and examples
are shown in chapter 4.5.
While any arbitrary block of data can be stored in the stack memory and then read back, all
stacks are expected to contain properly encoded sequences of VME or non-VME commands
and their associated options, such that they can be meaningfully decoded by the Command
Generator module and submitted for execution, while VM-USB operates in autonomous data
acquisition mode.

3.4 Internal Register File

Writing/reading to/from the internal register file is done by executing a 32 bit non-VME
write/read command with the address (offset) assigned to a given register, while bit 12 (value
0x1000 = 4096) of the Command Header Word is set to 1.  Details about the Command
Header Word are found in section 4.5

Table 2. Register VME address offsets and their functionality

Offset Register Note
HEX Dec
0x0 0 Firmware ID 32 bits, Read-only
0x4 4 Global Mode 16 bits, Read/Write
0x8 8 Data Acquisition Settings 32 bits, Read/Write
0xC 12 User LED Source Selector 32 bits, Read/Write
0x10 16 User Devices Source Selector 32 bits, Read/Write
0x14 20 DGG_A Delay/Gate Settings 32 bits, Read/Write
0x18 24 DGG_B Delay/Gate Settings 32 bits, Read/Write
0x1C 28 Scaler_A Data 32 bits, Read/Clear/Enable
0x20 32 Scaler_B Data 32 bits, Read/Clear/Enable
0x24 36 Events per Buffer 12 bits, Read/Write
0x28 40 Interrupt Service Vectors 1 + 2 32 bits, Read/Write
0x2C 44 Interrupt Service Vectors 3 + 4 32 bits, Read/Write
0x30 48 Interrupt Service Vectors 5 + 6 32 bits, Read/Write
0x34 52 Interrupt Service Vectors 7 + 8 32 bits, Read/Write
0x38 56 Extended DGG_A/B Delay Settings 32 bits, Read/Write
0x3C 60 USB Bulk Transfer Setup 32 bits, Read/Write
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3.4.1 Firmware ID Register  - Read only
Offset = 0 / 0x0

29-31 24-28 20-23 16-19 8-15 0-7
 Month Year Device ID Beta Version Major Revision Minor Revision

This Firmware ID register identifies the acting FPGA firmware in eight hexadecimal digits
MYDBBFFRR, where M and Y represent the month and year of creation, D represents the
device ID = 1 for VM-USB, B represents beta version, and F and R represent the firmware
main and revision numbers, respectively. Please see the notes about the different firmware
features in the Appendix section of this manual.

3.4.2 Global Mode Register – Read/Write
Offset = 4 / 0x4
The global mode register has the following 16-bit structure:

Bits 15 12-14 9-11 8 7 6 5 0 - 4
Value - BusReq - HeaderOpt Align32 FrceSclrDmp MixtBuff BuffOpt
The BuffOpt bits (0-3) define the output buffer length. BuffOpt = 9 forces buffer closure
after a fixed number of events. By default, this number is 1. If a different value is desired,
this value should be stored in the Events per Buffer register at offset=36 (0x24) – see Section
3.4.8.
Bit 4 controls the mode of buffer filling, such that 0 closes buffers at event boundaries and 1
allows spreading events across the adjacent buffers:

BuffOpt Value Buffer Length (words)
0 13k (default)
1 8k
2 4k
3 2k
4 1k = 1024
5 512
6 256
7 128
8 64
9 Event Count

The MixtBuff=1 selects mixed buffer option which allows one to pack data associated with
different  triggers  (NIM,  scaler,  IRQs)  into  the  same  data  buffers.  In  mixed  buffers,  events
associated with different triggers are identified by an Event Type ID encoded in bits 13-15 of
the event header word. Note that the bits 0 to 11 of this word list the event length and bit 12
indicates event length exceeding the length of the 2kWord event assembly buffer (i.e., that
the event is to be continued in next event buffer).
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The FrceSclrDmp bit, when set, forces an immediate USB dump of the scaler data acquired
as a result of the execution of the scaler stack (ID=1). By default (FrceSclrDmp bit reset) the
scaler buffer is dumped upon receipt by VM-USB of an event other than a scaler event.
The Align32 bit controls the alignment of data in the data buffer. The default alignment
(Align32=0) is on 16-bit boundaries. Setting Align32=1 causes all header (buffer and event)
and terminator words to be converted to 32-bit words, by adding blank 16-bit words. Also
16-bit data words that may be returned by some VME read commands are converted to 32-bit
numbers.
The HeaderOpt bit controls the structure of the buffer header, such that HeaderOpt=0 writes
out one header word identifying the buffer type (bit 15=1 – watchdog buffer, bit 14=0 – data
buffer, bit 14=1 – scaler buffer) and the number of events in buffer. When HeaderOpt = 1,
the second header word is written out listing the number of words in the buffer.
The BusReq bits identify the VME Bus Request level (0 to 4) to be used by VM-USB, when
not operated as a slot 1 controller (bus arbiter). BusReq=1,2,3, and 4 cause BR0, BR1, BR2,
and BR3 lines to be used, respectively.

3.4.3 Data Acquisition Settings Register – Read/Write
Offset = 8 / 0x8
The Data Acquisition Settings register stores the desired readout trigger delay and the scaler
readout mode and frequency. The readout trigger delay represents time in microseconds that
is allowed to lapse, counting from the start signal applied to the NIM I1 input or IRQ
received, before the stack execution is started, and is stored in bits 0-7 of the register.
The  scaler  readout  period  and  readout  frequency  allow  one  to  define  the  frequency  of  the
execution of the scaler stack, when such an execution is desired. When both numbers are set
to zero, no scaler readout is performed during the data acquisition. However, when the scaler
stack is not empty, the scaler readout is performed once at the end of run.
The scaler readout period (bits 8-15) represents the maximum time interval in units of 0.5s
between consecutive executions of the scaler stack. The scaler readout frequency (bits 16-31)
defines the relative frequency at which scaler stack is to be executed during the data
acquisition. The stored value is equal to the (maximum) number of data events separating the
scaler readout events. The event-based and timer-based triggers are set to cooperate on
“whichever-comes-first and reset all when done” policy. This means that both, event counter
and the timer are reset to zero after every execution of the scaler stack.

The scaler stack, when defined, is executed also always at the closing of the run.
The composition of the Data Acquisition Settings Register is as follows shown in the table
below

16-31 8-15 0-7
Scaler Readout Frequency Scaler Readout Period Readout Trigger Delay
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3.4.4 User LED Source  Selectors – Read /Write
Offset = 0x10 / 0xC
The Data stored in this register identifies the sources of the four user LED’s. The actual
selection of sources is firmware specific and subject to customization. The general bit
composition of the selector word is shown in the table below

The 3-bit code identifies the (one-of-eight) source of the signal. The four first sources may
differ for different LED’s, but the last four are shared among all four LED’s. The source
Codes are as follows:

Code Top Yellow Red Green Bottom Yellow
0 USB OutFIFO Not

Empty
Event Trigg. Acquire Not Slot One

1 USB InFIFO Not
Empty

NIM I1 Stack Not Empty USB Trigger

2 Scaler Event NIM I2 Event Ready USB Reset
3 USB InFIFO Full Busy Event Trigger VME BERR
4 VME DTACK VME DTACK VME DTACK VME DTACK
5 VME BERR VME BERR VME BERR VME BERR
6 VME Bus Request VME Bus Request VME Bus Request VME Bus Request
7 VME Bus Granted VME Bus Granted VME Bus Granted VME Bus Granted

3.4.5 User Devices Source Selector  - Read/Write
Offset = 16 0x10
There  are  six  user  devices  set  up  within  the  FPGA  resources  of  the  VM-USB  –  two  NIM
outputs, O1 and O2, two delay and gate generators or pulsers, DGG_1/P_1 and DGG_B/P_1,
and two 32-bit scalers, SCLR_A and SCLR_B. All of these devices may use various signals
as input/trigger signals, with the selection identified by respective code bits stored in the User
Devices Source Selector register. Additionally, this register accommodates bits that enable
and clear the two scalers. The bit composition of the User Devices source selector register is
shown in the table below.

Device Freeze Reset Enable Latch Bit Invert Bit Code
NIM O1 31 - - 4 3 0-2
NIM O2 31 - - 12 11 8-10
SCLR_A 31 19 18 - - 16-17
SCLR_B 31 23 22 - - 20-21
DGG_A 31 - - - 24-26
DGG_B 31 - - - - 28-30

LED Unused Bits Latch Bit Invert Bit Code Bits
Top Yellow 5-7 4 3 0-2

Red 13-15 12 11 8-10
Green 21-23 20 19 16-18

Bottom Yellow 29-32 28 27 24-26
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For the NIM outputs a 3-bit code identifies the (1 of 8) source of the signal. Like for LEDs,
the first four sources may differ for different NIM outputs, but the last four are shared., The
source codes are as follows

Code NIM O1 NIM O2
0 Busy USB Trigger
1 Event Trigger Executing VME Command
2 Bus Request VME Address Strobe AS
3 Xfer Event to Data Buffer Xfer Data Buffer to USB FIFO
4 DGG_A DGG_A
5 DGG_B DGG_B
6 End of Event End of Event
7 USB Trigger USB Trigger

Note 1. “Busy” signal indicates that stack processing is in progress, with VME operations not
being completed. “Busy” is asserted when event readout is triggered and removed as soon as
VME operations are completed.
Note 2. “Acquire” indicates that the data acquisition mode is active.
Note 3. “USB Trigger” is generated in response to writing to bit 1 of Action Register.
Note 4. “Event Trigger” indicates that event readout has been triggered.
Note 5. Invert bit causes the signal to be inverted
Note 6. Latch bit causes the signal to be latched. To release the latch one must toggle the bit.
The meaning of the input selector codes for scalers and delay and gate generators is shown in
the table below

Code SCLR_A SCLR_B DGG_A/P_A DGG_B/P_B
0 DGG_A SCLR_A_T Not Used Not Used
1 NIM I1 NIM I1 NIM I1 NIM I1
2 NIM I2 NIM I2 NIM I2 NIM I2
3 Event Event Event Trigger Event Trigger
4 - - End of Event End of Event
5 - - USB Trigger USB Trigger
6 Pulser Pulser

 Note  1.  SCLR_A_T  represents  complement  of  terminal  count  of  SCL_A,  allowing  one  to
daisy-chain the two scalers into one huge 64-bit scaler. This may be useful for time-stamping
purposes.
Bit 31 (vale=0x80000000) of the Device Selector Register word plays a special role in that it
allows one (when set) to freeze the content of this register for the enable/disable operations
on scalers. The state of the register is always frozen for the scaler reset operations. Note that
this bit must be set (along with bits 18 and/or 22 being reset) for the scaler disable operation.
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3.4.6 Delay and Gate Generator / Pulser Registers – Read/Write
DGG _A Offset = 20 / 0x14
DGG _B Offset = 24 / 0x18
DGG _ Ext Offset =56/0x38
The two Delay and Gate Generator / Pulser Registers DGG_A and DGG_B as well as the
DGG_ Extend register store data defining the length of the delay and the length of the gate in
units of 12.5 ns (80 MHz clock) for either the gate and delay generator or for the pulser.
These values can be set for channel A and B independently. The pulser is re-triggering after
the defined delay time, i.e. the delay time + gate length defines the pulser repetition rate. The
value of the delay is a composite of a high resolution value (12.5ns) and a coarse range value
which was added with firmware 6.0 to increase the possible time range up to 53.5s . Earlier
firmware versions use only the fine (12.5ns) value.

DGG_A 16-31 DGG_A 0-15
Gate Delay_fine

DGG_B Offset = 24 / 0x18
DGG_B 16-31 DGG_ B 0-15

Gate Delay_fine

DGG_ Ext Offset =56/0x38
DGG_B Ext (16-31) DGG_A Ext 0-15

Delay coarse Delay coarse

3.4.7 Scaler Registers SLR_A and SCLR_B – Read
Scaler_A Offset = 28 / 0x1C
Scaler_B Offset = 32 / 0x20

Scaler registers SLR_A and SCLR_B store 32-bit data from the two scalers SCLR_A and
SCLR_B respectively. The scaler input (event, NIM1 or NIM2) are defined within the User
Device Selector (see 3.4.5), which also allows resetting or disabling them.

3.4.8 Events per Buffer –Read/Write
Offset = 36 / 0x24

Events per Buffer register stores a 12-bit number that is to be used in conjunction with the
data output buffer size option BuffOpt=9 (see Section 3.4.2). It defines how many events are
stored in the data buffer before the content of the buffer is transferred to the FIFO of the USB

Gate length = 12.5ns * Gate

Delay = 12.5ns * Delay_fine + 819.2 s* Delay_coarse

Pulser repetition period = Gate + Delay
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controller IC. The default value is 1, resulting in single-event output buffers – same as for the
value of 1. The content of the register is disregarded for buffer size options other than 9.

3.4.9 Interrupt Service Vectors - Read/Write
Offset = 40 / 0x28
Offset = 44 / 0x2C
Offset = 48 / 0x30
Offset = 52 / 0x34
Offset = 64 / 0x40
Offset = 68 / 0x44

The VM-USB firmware allows one to set up up to 8 command stacks that can be used in
conjunction with hardware interrupts.

Any Stack ID = 0 – 7 can be linked to any combination of the IRQ level and the IRQ-ID
returned by the requestor module, such that one Stack ID can be shared by many interrupts.
Upon detection of a valid interrupt, VM-USB executes the stack linked to this particular
combination of IRQ level and IRQ-ID.

The Interrupt Service Vectors (up to 8) are stored in four master registers at VM-USB
register addresses 0x28 to 0x34 and two expansion registers at addresses 0x40 and 0x44. For
reasons of backward compatibility with earlier versions of the VM-USB firmware, each
vector spans two registers, a master register and an expansion register. The master register
identifies the least significant 8 bits of the IRQ-ID (to be received from the requestor upon
interrupt acknowledge IACKIN), the IRQ level (1-7), the ID (0-7) of the associated stack.
The vector is disregarded whenever the IRQ-ID is set to zero, e.g., allowing one to use Stacks
0 and 1 as regular and periodic (scaler) stacks, respectively. Each master register at addresses
0x28-0x34 stores two vectors as shown in the two tables below.

Address 0x28, Vector 1:

Bits 15 12 - 13 11 8 - 10 0 - 7
Value - Stack ID - IRQ Level IRQ-ID Bits 0-7

Address 0x28, Vector 2:

Bits 31 28 - 30 27 24 - 26 16 - 23
Value - Stack ID - IRQ Level IRQ-ID Bits 0-7

Similarly, registers at addresses 0x2C, 0x30, and 0x34 store parts of vectors 3 and 4, 5 and 6,
and 7 and 8, respectively.

The  VM-USB  firmware  incorporates  16-bit  IRQ-ID  handler,  with  bits  8-15  of  the  IRQ-ID
stored in two expansion registers at addresses 0x40 and 0x44, each shared by four IRQ
vectors. By default, the content of these registers is set to 0xFFFFFFFF, consistent with the
most common 8-bit IRQ-ID handling. The composition of an expansion register is as
follows:
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At address 0x40:

Bits 24-31 16-23 8-15 0-7
Expansion of Vector 4 Vector 3 Vector 2 Vector 1

Similarly, the expansion register at address 0x44 stores parts (bits 8-15 if the IRQ-ID) of
vectors 5-8.

The vectors can be stored in arbitrary order. Attention should be paid to associating correct
parts of master and expansion registers to individual vectors.

3.4.10 USB Bulk Transfer Setup Register – Read/Write
Offset=60/0x3C

In order to benefit from the high bandwidth of the USB2 interface, overheads associated with
single transfer operations should be avoided. Therefore, one must strive to reduce the number
of transfers by extending the length of bulk transfers. VM-USB, by default closes USB buffer
(generates a “packet end”) either at the end of the data buffer or at the end of event. This
guarantees bulk transfer lengths of only 26 kBytes for short events and lengths equal to event
lengths, in the case of long events. Such default setting does not allow one to utilize the
USB2 bandwidth when short events are acquired and, therefore, VM-USB offers an option to
“bundle” multiple data buffers together for a single bulk transfer.
Since in the case of short events the time of filling multiple buffers is variable, the option
includes setting of a watchdog timer, which will guarantee that a “packet end” signal is
generated at timeout, should the data buffers fail to fill sufficiently fast. This watchdog
timeout  should  be  made  shorter  than  the  software  timeout  set  for  bulk  read.  The  relevant
numbers for multi-buffer bulk transfer are stored in the USB Bulk Transfer Setup Register at
offset = 0x3C (decimal 60) such that the number of buffers is specified in bits 0 – 7 of this
register and the timeout is specified in bits 16-18. The 3-bit timeout represents the number of
seconds in excess of 1s, after which the packet end signal is issued, should the specified
number of buffers not be completed by that time. Note that the default (minimum) is 1s.

Bits 12 - 31 8 - 11 0 - 7
Value - Time out Number of Buffers

3.5 IRQ Mask

The VM_USB firmware offers one the option to mask IRQs via the IRQ mask register.  This
allows the user to adjust which IRQs the module is to respond to.
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A 7-bit IRQ mask can be setup, which defines which IRQs will be hidden from the
VM_USB.  Setting a bit to 1 causes the corresponding IRQ level to be ignored by VM-USB.

Bit 6 5 4 3 2 1 0
IRQ 7 6 5 4 3 2 1

Because of the architecture of the VM-USB, writing of the IRQ mask and reading it back is
not as easy as writing to other registers. This is because the mask resides in the Interface
CPLD (top XC95144XL CPLD, named U7) and there are no dedicated connections for this
purpose.

To write the IRQ mask:
1) Write the IRQ mask to bits 0-6 of the global register and set bit 15 to 1
2) Set bit 1 of the action register to 1.
3) While bit 15 of the global register is set, bits 24-30 of the Firmware ID register will

return the IRQ mask
4) Set bit 15 of the Global register to 0
5) Reset the proper bits to the global register to define the operational parameters

desired.
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4 COMMUNICATING WITH VM-USB

Communication with the VM-USB consists of writing and reading data buffers to/from the
USB2 port of the VM-USB using bulk-transfer mode. Borrowing from the USB language,
the buffers to be written to the VM-USB will be called Out Packets, and they are sent to pipe
0 of the USB port. The buffers to be read will be called In Packets, and they are read from
pipe 2 of the USB port.
The USB controller IC, when connected to a USB2 port configures packet lengths to 512
bytes. For USB1 (full speed), the packet length is set to 64 bytes. The Out Packets must be
properly formatted to be understood by the internal devices of VM-USB and, by the same
token, the format of the In Packets retrieved from the VM-USB must be understood by the
user in order to be useful.
User may send Out Packets to four devices – the Register Block (RB), VME Readout Stacks
(VDS and VSS), and the VME Generator (VGen). User may read In Packets only from the
Common Output Buffer. Reading back data from the RB, VDS, and VSS is achieved by, first
sending a data request Out Packet to these devices and then by reading the In Packet
containing the requested data from the Common Output Buffer.
Writing to the VME Generator constitutes implicitly a request for data, such that in response
to such a writing, VM-USB performs the requested VME operation (including the ones
addressed  to  internal  registers  of  VM-USB)  and  returns  the  VME  data  in  the  Common
Output Buffer. Both, In and Out Packets are of a variable length, depending on which
internal address is involved and what the content of the message is.
Important Note:
With some drivers (EZUSB in conjunction with Windows API), read operations from the
USB port are blocking operations, such that the host program will stop executing until the
data are available at the port. Therefore, the host program must make sure (by first requesting
data) that VM-USB has placed data in the Common Output Buffer (physically this is the
FIFO  of  the  USB  controller  IC),  before  the  read  command  is  issued.  VM-USB  provides  a
mechanism for supplying data, even when the host program is “frozen” in a state of waiting
for data. The mechanism consists in starting a second copy of the program and issuing a bare
request for data command from this second copy, not followed by the read IN Packet
command.
The libxxusb package of VM-USB access functions makes overlapped USB calls that have
preset timeout periods. When no data is available until the end of this period, the I/O is
canceled and the respective function returns error code. The user is then expected to take
proper actions, which may include resubmitting the call.
It  is  important  to  specify  a  sufficiently  long  In  Packet  size  to  be  at  least  of  the  size  of  the
actual data buffer available at the Common Output Buffer. This is especially important in the
case  of  reading  VME  data  buffers  which  differ  in  size  substantially  depending  on  the
structure of the VME Readout Stack.

4.1 General structure of Out Packets
Since internally, the USB controller of the VM-USB is set up as a 16-bit wide FIFO (First-
In-First-Out Memory), the In and Out Packets are organized as collections of 16-bit words.
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For the purpose of the software, and more specifically, of the Windows Application
Programming Interface (API) routines, the data are packed in byte-wide buffers, a process
that  may  remain  transparent  to  the  user  when  proper  set  of  routines  (DLLs)  is  used.  Also,
much of the technical information on writing and reading back data from the internal devices
of the VM-USB may be considered redundant, when a set of routines is available to perform
the task. This information is, however, necessary for writing such routines.
First (16-bit) word in an Out Packet identifies the internal device/address for which the
packet is intended and whether the packet represents a request for data or it contains the data
to be stored/interpreted to/by the target device. The latter information is coded in bit 2
(value=4) of the header word, with bit 2 set for write operations and reset for read operations
(request for data). The meaning of the second word in the Out Packet depends on the address
and represents the sub-address in the case of the Register Block and the number of words to
follow, in the case of VME Stacks (VDS and VSS) and the VME Generator (VCMD). The
subsequent words in the buffer, if any, represent the data to be stored in the target device or
the data to be interpreted and acted upon by the target device (in the case of the VCMD). A
detailed description of Out Packets for the four target devices is given below.

4.2 Writing Data to the Register Block
The Out Packet for writing data to the Action Register (the single register) of the Register
block is composed of the following words:
1. Target Address = 5 (1 + 4)  the target address identifying the register block + the “write”
bit.
2. Register Sub-Address = 10   secondary address of the Action Register
3. Data To be Written an 8-bit Action Register data word.

4.3 Reading Back Data from the Register Block
To read back data from the Register block, one must first send a request Out Packet to the
Register Block consisting of two words:
1. Target Address = 1 the target address of the Register Block
2. Register secondary address =10 of the Action Register.

4.4 Writing Data to the VME Command Stacks / VME Command Generator
Given the width of the VME address and data buses, the Stacks and the VME commands are
organized as a sequence of 32-bit words but coded in lines of 16-bit words.
The Out Packets targeting the 8 VME Command Stacks (VCS) for the DAQ mode and the
VME Command Generator (VCG) have identical structure, differing only in the Target
Address and in the allowed length. Writing a stack to the VM-USB the first line of the USB
out packet contains the Target Address (see table below). The following stack data define
first the length (number of following lines) as well as the starting address (0 – 1023, with
wrap-around) of the particular VCS stack within the 1kWord stack memory space. For the
starting address only the 9 least significant bits are relevant. The starting address is
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disregarded in earlier firmware versions (<6.1). The stack data are continued by 2 lines with
16-bit words for each 32 bit instruction.
The VME Command Generator (VCG) is an internal module that interprets the information
found either in the VME Stacks (when VM-USB is in data acquisition mode) or in the Out
Packet received from the USB port (when VM-USB is in interactive mode / EASY-VME
mode).  In  the  latter  case  the  VCG  performs  a  VME  command  stack,  which  can  be  longer
than the stack memory itself in order to perform more complex functions. The content of the
second line depends on whether the stack data are to be stored in the stack memory or
whether the stack is to be executed interactively. In the former case, it contains the starting
address of the stack within the stack memory space and in the latter case it represents the
high 16 bits of the number of lines in the long VCG stacks.
Please see the example and comments about stack generation at the end of chapter 4.5.
1. Target Address: 8 VCS (ID 0-7) and VCG

2. Stack size: Number of subsequent words (low word of Number for VCG)
3. Stack starting address (high word of Number for VCG)
4. Stack word 1
5. Stack word 2
…
N*2. Last stack word ( N=Number of 32-bit words in stack + 2)

4.5 Structure of the Command Stack
A command stack consists of a stack header word and a sequence of VME and non-VME
commands encoded in one or more 32-bit words, each. The first word (32-bit) of the stack
specifies the number of 16-bit half-words to follow
The first word of a command, the Command Header Word identifies the type of the
operation. Depending on its content, it may or may not be followed by additional words such
as one or more (up to 4) Auxiliary Data Words, a single VME Address Word, or one or more
VME Data Words
The Command Header Word stores the 6-bit VME address modifier (if relevant), along with
other data defining the write/read mode and the format of the VME data, and some important
options bits. Settings of options bit identify the type of operation desired:

15 14 13 12 11 10 9 8 7-6 5-0
DLY * MRK SLF MB NA * NW DS AM

31-24 23-22 21-20 19 18 17 16
BLT NT * HM ND HD BE

5 4 3 2 1 0
VCS ID Bits1-2 VCG Bit Write Bit VCS Bit VCS ID Bit 0
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Where the individual bits have the following meaning:
AM 6-bit VME Address Modifier
DS VME data strobes DS0 and DS1. Zero indicates that a particular strobe is generated,

while 1 suppresses the strobe.
NW Write mode – NW=0 indicates “Write” operation and NW=1, “Read” operation.
MB Multi Block transfer, with firmware 16000503 32-bit multi-block transfer can be

performed by repeating standard 32-bit block transfers for a predetermined number of
times, with the starting address being incremented every time by 0x100 (i.e. 256
bytes). The number of repetitions is practically unlimited (32-bit value). To use this
option, bit 11 (value 0x8000) of the Command Header Word must be set and the
word itself is to be followed by a 32-bit word specifying the desired number of (auto-
incrementing) repetitions. The length of the blocks is defined by bits 24-31 of the
Command Header Word.

NA NA=1 suppresses address auto-increment in multi-BLT transfers.
SLF SLF=1 indicates access to Internal Register File in firmware 95000405 and later.
MRK MRK=1 indicates writing of a marker word directly into the output data stream.
DLY DLY=1  indicates  that  the  VM-USB  should  pause  for  a  specified  amount  of  time

before  executing  the  rest  of  the  out  packet.   The  delay  time is  specified  in  units  of
200ns in bits 0 - 7. All other bits are disregarded.  ( Before Firmware 805, this bit is
ignored.)

* Don’t care
BE Endianess – BE=1 sets data mode to big endian (VME default) and BE=0 indicates

little endian.
HD Hit  Data -  identifies the data returned by the command as the content of hit  register

data  (coincidence  register  data),  to  be  used  for  the  conditional  execution  of  the
subsequent VME commands. There may be one or more hit registers in a stack, with
the most recent being active in a conditional operation.

ND Number Data - identifies the data as a word containing in certain field the desired
length of the subsequent block transfer. The actual number is extracted by taking a
logical AND with a 32-bit mask word supplied in the auxiliary data word following
this Command Header Word. This number overrides the number specified in the
dedicated bit field of the subsequent block transfer command (bits 24-31 of the
Command Header Word). See Section 4.5.16.

HM Hit Mode - instructs the command Generator to condition the readout with the content
of the latest hit pattern read in the event. The Number of Product Terms used to
condition the readout must be specified as well.

NT  Number  of  Product  Terms  –  specifies  the  number  of  32-bit  words  in  the  stack  that
follow and that constitute bit masks for constructing a logical equation used in
deciding whether the given operation is to be performed for the particular hit register
data.
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BLT Number of transfers in block transfer mode (defined in address modifier word, AM)

The second stack line contains VME address, which can be 16-bit, 24-bit, or 32-bit wide,
depending on the address modifier word AM. Bit 0 represents the VME LWORD.
The following rules apply:
 (i) When NW=0 (write mode), the second stack line must be followed by one (single
“write”) or BLT (block transfer) data lines.
 (ii) When either SLF or MRK bit is set, the VME address modifier code AM is disregarded.
The “write” data must be properly formatted, according to their endianess and their
placement on the bus. The latter is defined by values of the data strobes, A(0) (LWORD),
and A(1).
Various “write” data formatting patterns and the corresponding Mode / Address bits are
illustrated in the table below.

BE DS1 DS0 A(1) A(0)
LWORD

D31-D24 D23-D16 D15-D8 D7-0

1 0 0 0 0 Byte(0) Byte(1) Byte(2) Byte(3)
1 0 1 0 0 Byte(0) Byte(1) Byte(2) -
1 1 0 0 0 - Byte(1) Byte(2) Byte(3)
1 0 0 1 0 - Byte(1) Byte(2) -
1 0 0 1 1 - - Byte(2) Byte(3)
1 0 0 0 1 - - Byte(0) Byte(1)
1 1 0 1 1 - - - Byte(3)
1 0 1 1 1 - - Byte(2) -
1 1 0 0 1 - - - Byte(1)
1 0 1 0 1 - - Byte(0) -
0 0 0 0 0 Byte(3) Byte(2) Byte(1) Byte(0)
0 0 1 0 0 Byte(2) Byte(1) Byte(0) -
0 1 0 0 0 - Byte(3) Byte(2) Byte(1)
0 0 0 1 0 - Byte(2) Byte(1) -
0 0 0 1 1 - - Byte(3) Byte(2)
0 0 0 0 1 - - Byte(1) Byte(0)
0 1 0 1 1 - - - Byte(0)
0 0 1 1 1 - - Byte(1) -
0 1 0 0 1 - - - Byte(2)
0 0 1 0 1 - - Byte(3) -

Byte(0) is the least significant byte. The A(1) and A(0)/LWORD bits have to be defined
accordingly in the Address Word.
The data read from the VMEBus are either 16-bit or 32-bit wide. They are filled always from
Byte(0) in a contiguous manner. Single-byte and two-byte data are stored in 16-bit words,
while longer data are stored in 32-bit words.
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Since the stack can be quite complex, it is advisable to write a proper routine or macro to set
it up. As a convenient option, one may utilize the XXUSBWin Windows application to build
the stack and save it to disk.

4.5.11 Single Transfer Commands

A  single  transfer  commands  consists  of  a  proper  Command  Header  Word  followed  by  an
Address Word and, if applicable (a Write command), by the data word.

4.5.12 Block Transfer Commands BLT and MBLT

VME block transfer commands, both BLT and MBLT are coded the same way in which short
universal multi-block transfers are coded and constitute special cases of the latter. See the
following section.

4.5.13 Enhanced Multi-block Transfer

A multi-block transfer feature allows one to encode in one command a sequence of BLT and
MBLT  transfers  (for  MBLT,  read  only)  with  or  without  starting  address  increment  for  the
consecutive blocks and, thus, to read/write large amounts of data from/to addressable
memories and FIFOs. The starting address may be any valid address, i.e., it does not have to
be on the 256-byte (BLT) or 2048-byte (MBLT) boundary. The VM-USB firmware will
issue a sequence of BLT/MBLT commands such that each of them, with possible exception
of the first one will begin on the block boundary and each one, with a possible exception of
the last one will end on block boundary minus one word. If the block boundary is not being
crossed because of the specified number of transfers, a multi-block transfer defaults naturally
to standard VME BLT or MBLT.

The VM-USB firmware allows two forms of multi-block transfer commands, a universal one
and a quick one. The universal form allows short and full forms. Both, universal and quick
forms are identified by the value of the AM code in the Command Header Word but they
differ in the setting of bit 11 and in the role of bits 4-31 of this word.

The universal form of multi-block transfer in its short version allows one to generate up to
254 BLT transfers and up to 256 MBLT (64 bytes each) transfers. The command consists in
this case of the Command Header Word with a proper BLT/MBLT AM code and the number
of transfers encoded in bits 24-31 of this word. The Command Header Word must be
followed by the VME Address Word and by a right number of VME Data Words, if the
operation is a “write” operation (bit 8 of the Header Word reset). When the bits 24-31 of the
Header  Word  specify  zero,  a  default  number  of  64  transfers  are  used  for  both  BLT16  and
BLT32 and of 256 transfers for MBLT.

The universal form of multi-block transfer in its full form allows one to generate up to 2^23
BLT and up to 2^22 MBLT transfers. This form requires bits 24-31 of the Command Header
word to be set, representing 255 and the header word to be followed by an Auxiliary Data
Word representing the number of desired transfers in its 24 (BLT) or 23 (MBLT) least
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significant  bits.  Similarly  to  the  short  form,  the  VME  Address  Word  and,  possibly,  VME
Data Words must follow.

The quick form of multi-block transfer is identified by bit 11 set (value=0x800) in the
Command Header Word. The header word must be followed by an Auxiliary Data Word (32-
bit) specifying the number of blocks to be transferred in its least significant 18 (BLT) or 16
(MBLT) bits. The firmware computes the total number of desired transfers assuming 64
transfers per BLT and 256 transfers per MBLT and treats then the command as a universal
multi-block transfer command. While the quick form was originally designed to be used in
conjunction with a starting address on the conventional block boundary (256 bytes for BLT
and 2048 bytes for MBLT) it can be actually used in conjunction with any valid VME
address. The VM-USB firmware will take care of issuing new BLT/MBLT commands as the
block boundaries are reached.

To suppress incrementing of the starting addresses of consecutive blocks, such as might be
needed to access long FIFOs, on must set bit 10 (value 0x400) of the Command Header
Word.

Multi-block transfer terminates upon receipt of bus error BERR and, in the case of Read
commands, 0xFF..FF is written to the output data stream to signal the fact of such a
termination.

4.5.14 Writing Marker Words into the Output Data Stream

The  VM-USB  firmware  allows  one  to  insert  marker  words  into  the  output  data  stream  to
mark desired locations of data within an event to facilitate viewing and unpacking of the data
buffers. A typical use is to mark the ends of events and ends of long blocks of data. To write
a marker, a two-word Write Marker command must be inserted into the command stack, such
that the Command Header Word identifies in its bit 13 (value 0x2000) the command as a
Write Marker command. This Command Header may be simply 0x2000, as the remaining
bits will be disregarded. The Command Header must be followed by a 32-bit marker data
specifying the desired marker in its 16 least significant bits. When a 32-bit alignment of data
is requested, two marker words are inserted with the second one composed of the 16 most
significant bits of the specified data. No address word is allowed. Any number of Write
Marker commands may be inserted in the command stack, either contiguously or otherwise,
subject to overall limits on the lengths of the stacks.

4.5.15 Use of Hit Registers for Conditional Execution of Stack Commands

VM-USB allows one to use hit registers (coincidence registers) to perform conditional
execution of any stack commands. To perform such a conditional execution, one must first
define a module to be read as a hit register module and then identify any of the subsequent
commands as conditional ones, while specifying the conditions.

A module is identified in the command stack as a hit register by setting bit 17 (value
0x20000) in the Command Header Word. The data read from such a module are stored in a
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register and used in subsequent conditional operations to verify if a desired condition is met.
One may have any number of hit registers defined, each overriding the latest hit word and
providing a new hit pattern for subsequent conditional readouts.

A command to be executed conditionally is identified in the command stack by setting bit 19
(value 0x80000) of its Command Header Word. Additionally, one must specify in bits 22-23
(values 0x400000 and 0x800000) of the Command Header Word the number of terms less
one (i.e., zero indicates one mask word) in the logical equation (condition) and supply the
specified number of 32-bit mask words in Auxiliary Data Words following the VME Address
Word.

The command is executed when the following logical condition composed of up to fourfold
OR of 32-fold ANDs is met:
  (BMask(1) AND HD = BMask(1)) OR
  (BMask(2) AND HD = BMask(2)) OR
  (BMask(3) AND HD = BMask(3)) OR
  (BMask(4) AND HD = BMask(4)).
Here, HD represents the most recent hit data retrieved from a hit register and BMask(*) are
the (up to four) 32-bit mask words. Note that the command will be executed whenever in the
most recent hit register data all bits specified in any of the used Bit Masks are set.

4.5.16 Using Dynamical Block Sizing for Block Transfers

VM-USB allows one to perform block and/or multi-block transfers, both BLT and MBLT,
with  number  of  transfers  retrieved  dynamically  from  a  suitable  VME  device.  The  number
may be up to 24 bits long. To use this feature, one must tag the command in the stack that is
to retrieve the desired number, by setting the ND bit (value 0x40000) in the Command
Header Word and by following this word with an Auxiliary Data Word representing the 32-
bit number extract mask.
The number extract mask word must have a contiguous set of up to 24 bits set to identify the
position of the desired number within the data word retrieved from the VME device. For
example, the mask 0x00FFFF00 will cause bits 8 – 23 of the retrieved number to be used as a
16-bit number of transfers in multi-block transfer.
The resulting number will be used in the subsequent block transfer instead of the static
number supplied with the block transfer command. When the number is such that the
transfers are to cross the conventional block boundaries (256 bytes for BLT and 2048 bytes
for MBLT), the block transfer converts automatically into multi-block transfer such that new
BLT/MBLT VME commands are issued at block boundaries
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4.5.17 Inserting Wait states before the Execution of Stack Commands
The VM-USB firmware allows one to insert wait commands into the stack causing VM-USB
to pause for a specified length of time before executing the next command in the stack. This
command uses only one word, the Command Header Word itself. In this case, bit 15 of the
Command Header Word must be set to 1 and the wait time in units of 200 ns must be
specified in bits 0 – 7 of this word. This command being a 32-bit word will occupy two lines
in the stack, however all bits other than 0-7 and 15 are disregarded.

4.5.18 Using XXUSBWin Application to Handle Stacks

The MS Windows application XXUSBWin allows one to create, save, and read, as well as to
upload the VME command stack list in an easy and convenient way.

Further, it is possible to create the VME command stack with either a text editor or user
program. All required programming details are given in chapter 4.5.
The following example shows the VME command stack (as saved to file) for a VME 32-bit
write to address 0x78000020 / data 0xAAAAFFFF as well as a VME 16-bit read from
address 0x78000120, both with AM=0x09. Please note that the VME command stack is
based on 32-bit words but arrange in 16-bit lines, i.e. 2 consequent lines belong to one 32-bit
word. Explanations are added in blue color:

VM-USB Command Stack Generated on 8/29/2005 at 5:56:57 PM
A // number of lines (decimal 11)
0000 // the starting address to store the stack within the stack buffer
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0009 // AM / write mode (bits 0-15)
0000 // BLT / special modes (bits 16-31)
0020 // VME address (bits 0-15)
7800 // VME address (bits 16-31)
FFFF // data (bits 0-15)
AAAA // data (bits 16-31)
0109 // AM / write mode (bits 0-15), bit 8=1 for read
0000 // BLT / special modes (bits 16-31)
0121 // VME address (bits 0-15), A0=1 for 16bit

7800 // VME address (bits 16-31)

4.6 Structure of the IN Packets
The General Output Buffer is associated with Endpoint 6 of the USB2 controller IC, which is
configured as a 512 byte deep FIFO. This endpoint is configured for bulk transfer and one
can specify lengths of buffers to be read of any length (up to 26 kBytes) compatible with the
VM-USB functionality. All data supplied by the VM-USB is to be read from the Endpoint 6.
While reading, it is important to specify the length of the buffer not shorter than the length of
the actual data buffer written by the VM-USB into this endpoint.
The structure of data retrieved in conjunction with direct requests for data addressed to the
Register Block and to the VME Stacks is straightforward, such that the buffer consists only
of the requested data.
The data buffers read during the data acquisition process have a structure depending on the
buffer filling mode selected by bit 4 of BuffOpt code specified in the Global Register. The
default filling is such that the buffer contains only complete events (bit 4 of BuffOpt=0). On
the other hand, when bit 4 of BuffOpt is set, continuous filling is selected allowing single
events to span two or more buffers. Whenever the size of a single event exceeds the declared
size of the data buffer and the filling mode is set for complete events, the filling mode
switches to continuous mode, with this fact tagged by setting of the bit 13 of the buffer
header word. For the Complete Event Mode, the data buffer has the following structure:
1. Header word

15 14 13 12 11-0
LB Scaler Cont MB NE

LB= Last Buffer, is 1 if the buffer is last buffer of a run
Scaler=Scaler Buffer, is 1 if the data in the buffer is from the scaler stack
Cont= Indicates the module switched to a continuous mode
MB= Indicates that the event data spans several buffers

NE=Number of Events, indicates how many events are in the buffer
2. Optional 2nd Header Word Bits 0-11 represent the number of words in the buffer.
3. Event Header

Event length (in 16 or 32-bit words depending on read type) including terminator words.

15-13 12 11-0
Stack Id Continuation bit Event length
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4. Event Data
5. Optional Event Terminator (user definable, 0xAAAA in firmware before 660007010
…
…   Subsequent Events
…
Buffer Terminator 0xFFFF
Second Buffer Terminator 0xFFFF – firmware 66000701 and newer
Firmware 95000405 and later allows one to mix regular and scaler events in a common data
buffer. In a mixed buffer mode, the scaler data are identified by bit 15=1 of the Event Length
word.
Note that write operations performed in autonomous mode (data acquisition) do not return
data into the data stream.
The  unpacking  of  the  events  must  be  done  in  accordance  with  the  VME  Stack  that  is
involved in generating the buffer.
In  the  Continuous  (split-event)  mode,  when  events  span  two  or  more  buffers,  no  buffer
terminator is written.
For the direct access of the VME Command Generator (Interactive VME operations), no
header words are written and the In Packet contains only one event.
VM-USB  has  dedicated  2kWords-long  event  FIFO  to  compile  events.  To  handle  longer
events, VM-USB splits the long event into parts, each of which appears as a separate event in
the output buffer. The partial events are tagged by setting bit 12 of the Event Length word,
except for the last part. Also, only the last “installment” is terminated by the Event
Terminator word (s).
VM-USB has  a  provision  to  automatically  switch  the  output  buffer  packing  mode  to  Split-
Event mode, whenever the Event Length exceeds the length of the Integer-Event buffer.
Setting of bit 13 in the buffer header word indicates the fact of such a change.
With firmware 16000503 and the introduction of up to 8 executable stacks the structure of
the event header (specifying the number of words in the event) has been modified to identify
the stack ID associated with this event. The 3-bit stack ID is stored in bits 13-15 (counting
from 0) of the event header word. Unless a mixed-event option is selected for data buffering
(recommended for increased band width), the buffers will contain events with identical stack
IDs.

In interactive mode, VME Write command returns a single word, but only when this
command is the last command in the interactive stack. Note that this includes the case when
the  write  command  is  the  only  command  in  the  stack.  The  returned  word  is  “1”  when  the
operation was successful (DTACK was received) and is “0” when bus error, BERR was
received instead of DTACK.

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S
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VME 8 and 16-bit Read returns a single word with data in bits 0-8 and 0-15, respectively:

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

VME 24-bit Read: returns 2 words, with data bits 0-15 and 16-23, respectively:

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
2. 0 0 0 0 0 0 0 0 D23 D22 D21 D20 D19 D18 D17 D16

VME 32-bit Read: returns 2 words, with data bits 0-15 and 16-31, respectively:

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
2. D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
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5 GUIDE TO LIST MODE DATA ACQUISITION WITH VM-USB

VM-USB is intended for use in list mode data acquisition, where it performs sequences of
desired VME operations pursuant to stack(s) stored in it, upon receipt of event trigger. VM-
USB then formats the data read form the VME bus and buffers them in a data buffer. When
the buffer is full, VM-USB transfers its content to the In FIFO of the USB controller IC for
readout by host software.

To set up VM-USB for data acquisition in list mode the following steps are advised:

1. Build the regular VME command stacks by adding all the desired simple and
complex commands to it. One must make sure that the stack sequence will clear all
VME modules. It is recommended to first execute the stack from the host software to
verify that it performs as intended. For this purpose the libxxusb library function
xxusb_stack_execute can be used. For longer stacks, it may prove useful to insert one
or more marker words at the end of the stack to mark the end of an event in the data
stream.

2. Load the stack into the VM-USB memory, e.g., by calling the libxxusb library
function  xxusb_stack_write.  It  is  recommended  to  read  back  the  stack  (function
xxusb_stack_read), to verify that the stack is correctly stored.

3. When the setup calls for it, build and load the auxiliary (scaler) stack and define the
readout mode and frequency.

4. Set the trigger delay (time from the receipt of an event to the commencement of the
stack execution).

5. If VM-USB is not the slot 1 controller, set up the bus request level, by writing the bus
request level code into bits 12-14 of the Global Register.

6. Set up buffering mode and data buffer length by writing a suitable 5-bit code into bits
0-4 of the Global Mode Register. The default is buffer length of 13k words and events
fitting into one buffer.

7. Set buffer header option. By default, VM-USB writes one buffer header word
containing information on the number of events in the buffer, buffer type (regular, or
periodic auxiliary), and the buffer termination mode (regular or watchdog).

8. Set up interrupt vectors, if interrupts are to be handled.
9. Start acquisition by setting bit 0 of the Action Register to 1. End acquisition by

resetting this bit to “0”. While in acquisition mode, the host software is expected to
read the USB port In FIFO in a loop, to empty it and make space for subsequent
events.
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6 LIBXXUSB LIBRARY FOR WINDOWS AND LINUX

A dedicated library of functions was developed to facilitate the utilization of VM-USB and
its CAMAC counterpart, CC-USB. This library is called libxxusb and requires the
libusb0.sys driver to be installed. It is in fact a wrapper library for the general-use libusb-
win32 library available via www.sourceforge.net at  no charge.  All  functions are part  of the
libxxusb.dll dynamically loadable library.
For linux the library is called libxx_usb.  All the functions are identical to the ones used in
Windows.

All xxusb functions for both 32-bit MS Windows (Win98SE, WinME, Win2k, WinXP) as
well as for Linux rely on the USB library “libusb-win32”(Windows) or “libusb” (Linux). For
further details about these libraries please see www.sourceforge.net or
http://sf.net/projects/libusb/ .
The following functions are used for both the VM_USB and its’ counterpart the CC_USB.

6.1 xxusb_devices_find

The xxusb_devices_find function retrieves relevant parameters of USB ports of all XX-USB
devices attached to the host and returns these in an array of proper structures. This is the first
command to be issued when attempting to establish communication with an XX-USB.

WORD xxusb_devices_find{
XXUSB_DEVICE_TYPE lpXXUSBDevice,

};

Parameters
lpXXUSBDevice

[out] Pointer to an array of structures storing parameters of all XX-USB devices
identified.

Return Values
On success, the function returns the number of XX-USB devices found, including 0.
A negative return value indicates that the handle to a valid device could not be opened as a
result of insufficient privileges. It is recommended to retry in Superuser mode.

6.2 xxusb_device_open

The xxusb_device_open function obtains handle to the desired XX-USB device, identified by
xxusb_devices_find command. This is the second command to be issued when attempting to
establish communication with an XX-USB. The obtained handle is then to be used while
calling various xxusb_*_* functions, that require the handle. Upon termination of a XX-USB
session, the handle is to be released by calling xxusb_handle_close.

WORD xxusb_device_open{
USB_DEVICE_TYPE lpUSBDevice,

};
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Parameters
lpUSBDevice

[in] Pointer to a structure storing parameters of the target XX-USB devices.

Return Values
On success, the function returns the handle to the target XX-USB device. A negative return
value indicates that the handle to a valid device could not be opened as a result of insufficient
privileges. It is recommended to retry in Superuser mode.

Remarks
While all xxusb functions rely on the libusb (www.sourceforge.net) functions while
communicating with XX-USB, xxusb_device_open and xxusb_handle_close are simply
macros creating aliases to usb_open and usb_close functions of the libusb library.

6.3 xxusb_serial_open

Opens a xxusb device (CC-USB or VM-USB) whose serial number is given

USB_DEV_HANDLE* xxusb_serial_open{
char *SerialString

};

Parameters:
  SerialString

a char string that gives the serial number of the device you wish to open.  It takes the
form:

                  VM0009 - for a VM_USB with serial number 9 or
                  CC0009 - for a CC_USB with serial number 9

Returns:
LpUSBDevice

[out] Pointer to a variable containing the handle to the controller

6.4 xxusb_device_close

The xxusb_device_close function closes the handle to the desired XX-USB device, obtained
by a xxusb_device_open call. This function is to be called upon termination of an XX-USB
session.

WORD xxusb_device_close{
USB_DEV_HANDLE lpUSBDevice,

};

Parameters
lpUSBDevice
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[in] Pointer to a variable containing the handle to be closed.

Return Values
Returns negative upon failure.

Remarks
While all xxusb functions rely on the libusb (www.sourceforge.net) functions while
communicating with XX-USB, xxusb_device_open and xxusb_handle_close are simply
macros creating aliases to usb_open and usb_close functions of the libusb library.

6.5 xxusb_reset_toggle

The xxusb_reset_toggle function toggles the reset state of the FPGA while XX-USB is in
programming mode – rotary selector set in one of four P* positions.

WORD xxusb_reset_toggle{
HANDLE hDevice,

};

Parameters
hDevice

[in] Handle to the XX-USB device.

Return Values
Returns negative upon failure.

6.6 xxusb_register_write

The xxusb_register_write sends a data buffer to XX-USB, causing the latter to store the
desired data in the target register.

WORD xxusb_register_write{
HANDLE hDevice,
WORD wRegisterAddress,
DWORD dwRegisterData

};

Parameters
hDevice

[in] Handle to the XX-USB device.

wRegisterAddress
[in] Address of the XX-USB register.

For a list of XX-USB addresses, see Remarks

dwRegisterData
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[in] Data to be stored in the register.

Return Values
On success, the function returns the number of bytes sent to XX-USB.
Function returns 0 on attempted writes to read-only registers and negative numbers on
failures.

6.7 xxusb_register_read

The xxusb_register_read function first, sends a buffer to XX-USB, causing the latter to write
the content of a desired register to its USB port FIFO and then, obtains the value by reading
the buffer from the XX-USB.

WORD xxusb_register_read{
HANDLE hDevice,
WORD wRegisterAddress,
LPDWORD lpRegisterData

};

Parameters
hDevice

[in] Handle to the XX-USB device.

wRegisterAddress
[in] Address of the XX-USB register.

For a list of XX-USB addresses, see Remarks

lpRegisterData
[out] Pointer to a variable that receives the data returned by the operation, i.e., the value
stored at wRegisterAddress of XX-USB.

Return Values
On success, the function returns the number of bytes read XX-USB. Valid values are 2 and 4,
with the latter only for LAM Mask and LAM registers.
Function returns a negative number on a failure.

6.8 xxusb_stack_write

The xxusb_stack_write function sends a buffer to XX-USB, causing the latter to store this
content in a dedicated block RAM, for use when data acquisition mode is active. This content
can be read back using xxusb_stack_read function.

WORD xxusb_stack_write{
HANDLE hDevice,
WORD wStackType,
LPDWORD lpStackData

};
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Parameters
hDevice

[in] Handle to the XX-USB device.

wStackAddress
[in] Type of the XX-USB stack, the content of which is to be read. Valid types are 2,
for the regular stack and 3, for the periodic (scaler) readout stack.

lpStackData
[in] Pointer to a variable array that contains the data to be stored in the target stack.

Return Values
On  success,  the  function  returns  the  number  of  bytes  sent  to  XX-USB.  The  latter  value  is
twice the length of the stack plus 2 (for a header word identifying a stack as a target).
Function returns a negative number on a failure.

Remarks
The physical length of the regular stack is 768 16-bit words for CC-USB and 768 32-bit
words for VM-USB.
The physical length of the periodic (scaler) stack is 256 16-bit words for CC-USB and 256
32-bit words for VM-USB.
While the stack is expected to contain properly encoded sequence of VME (VM-USB) or
VME (VM-USB) commands to be performed by XX-USB, it can store any sequence of
numbers.

6.9 xxusb_stack_read

The xxusb_stack_read function first, sends a buffer to XX-USB, causing the latter to write
the content of a desired stack to its USB port FIFO and then, obtains this content by reading a
buffer from the XX-USB.

WORD xxusb_stack_read{
HANDLE hDevice,
WORD wStackType,
LPDWORD lpStackData

};

Parameters

ID wStackAddress Device Trigger
0 2 0x02 Regular Stack NIM I1, USBstart
1 3 0x03 Scaler Stack Periodic
2 18 0x12 IRQ stack VME IRQ 1-7
3 19 0x13 IRQ stack VME IRQ 1-7
4 34 0x22 IRQ stack VME IRQ 1-7
5 35 0x23 IRQ stack VME IRQ 1-7
6 50 0x32 IRQ stack VME IRQ 1-7
7 51 0x33 IRQ stack VME IRQ 1-7
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hDevice
[in] Handle to the XX-USB device.

wStackAddress
[in]  Type  of  the  XX-USB  stack,  the  content  of  which  is  to  be  read.  For  valid  stack
addresses see table above at 6.8.

lpStackData
[out] Pointer to a variable array that receives the data returned by the operation, i.e., the
content of a XX-USB stack.

Return Values
On success, the function returns the number of bytes read from XX-USB. The valid value is
twice the length of the stack, as the latter stores 2-byte words.
Function returns a negative number on a failure.

6.10 xxusb_stack_execute

The xxusb_stack_execute function first, sends a buffer to XX-USB, causing the latter to
interprete  its  content  as  a  series  of  simple  and  complex  VME  commands  and  to  actually
execute these commands and to write the returned VME data to the USB port  FIFO. Then,
xxusb_stack_execute reads a buffer from XX-USB, containing the desired VME data.

WORD xxusb_stack_execute{
HANDLE hDevice,
LPDWORD lpData,

};

Parameters
hDevice

[in] Handle to the XX-USB device.

lpData
[in] Pointer to a dual-use variable array. When calling the function, the array contains
the data encoding the sequence of desired commands (VME commands for VM-USB
and VME commands for VM-USB) to be performed by XX-USB. The first element of
the array is the number of bytes. The following command has to be defined similar to
the VME / VME command stack (see paragraph 4.5). Upon return, the array contains
the VME (VM-USB) or VME (VM-USB) data, respectively.

Return Values
On success, the function returns the number of bytes read from XX-USB. The valid value is
twice the number of 16-bit data words returned plus 2 (CC-USB) or 4(VM-USB). The latter
“overhead” bytes contain event terminator word (0xFF for VM-USB, and 0xFFFF for VM-
USB).
Function returns a negative number on a failure.
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6.11 xxusb_ longstack_execute
Executes stack array passed to the function and returns the data read from the VME bus

int  xxusb_longstack_execute{
HANDLE hDevice,
void *DataBuffer,
int lDataLen,
int timeout

};
Paramters:
hDevice

[in] Handle to the XX-USB device.

DataBuffer
pointer to the dual use buffer; when calling DataBuffer contains (unsigned short)
stack data, with first word serving as a placeholder, upon successful return,
DataBuffer contains (unsigned short) VME data

lDataLen
The number of bytes to be fetched from VME bus - not less than the actual
number expected, or the function will return -5 code. For stack consisting only of
write operations, lDataLen may be set to 1.

Timeout
The time in ms that should be spent tryimg to write data.

Return Values
    When Successful, the number of bytes read from xxusb.
    Upon failure, a negative number

  Remarks
The function must pass a pointer to an array of unsigned integer stack data, in which the
first word is left empty to serve as a placeholder.
The function is intended for executing long stacks, up to 4 MBytes long, both "write"
and "read" oriented, such as using multi-block transfer operations.

Structure upon call:

DataBuffer(0) = 0(don't care place holder)
DataBuffer(1) = (unsigned short)StackLength bits 0-15
DataBuffer(2) = (unsigned short)StackLength bits 16-20
DataBuffer(3 - StackLength +2)  (unsigned short) stack data

StackLength represents the number of words following DataBuffer(1) word, thus the
total number of words is StackLength+2

Structure upon return:
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DataBuffer(0 - (ReturnValue/2-1)) - (unsigned short)array of returned data when
ReturnValue>0

6.12 xxusb_usbfifo_read

The  xxusb_usbfifo_read  function  reads  the  content  of  the  USB  port  FIFO  of  XX-USB  or
times out whenever this FIFO has not set the “FIFO Full” flag.

WORD xxusb_usbfifo_read{
HANDLE hDevice,
LPDWORD lpData,
WORD wDataLen,
WORD wTimeout

};

Parameters
hDevice

[in] Handle to the XX-USB device.

lpData
[out] Pointer to a variable array that receives the data returned by the operation, i.e., the
content of the USB port output FIFO of the XX-USB.

wDataLen
[in] Number of words to read. This number must be not less than the number of bytes
stored in the output FIFO.

wTimeout
[in] Time in milliseconds, after which the I/O operation is canceled, should there be no
data available for the readout.

Return Values
On success, the function returns the number of bytes read from XX-USB.
Function returns a negative number on a failure, which in most cases signifies a timeout
condition.

Remarks
The xxusb_usbfifo_read is intended for use while XX-USB is in data acquisition mode. Upon
timeouts, the host application receives the control and may reissue the command or terminate
the acquisition

6.13  xxusb_bulk_read

The xxusb_bulk_read function reads the content of the USB port FIFO of XX-USB or times
out whenever this FIFO has not set the “FIFO Full” flag.

WORD xxusb_bulk_read{
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HANDLE hDevice,
xxxx *pData,
WORD wDataLen,
WORD wTimeout

};

Parameters
hDevice

[in] Handle to the XX-USB device.

pData
[out] pointer to an array to store data that is read from the VME bus; the array may be
declared as byte, unsigned short, or unsigned long.

wDataLen
[in] Number of bytes to read. This number must be not less than the number of bytes
stored in the output FIFO.

wTimeout
[in] Time in milliseconds, after which the I/O operation is canceled, should there be no
data available for the readout.

Return Values
On success, the function returns the number of bytes read from XX-USB. Function returns a
negative number on a failure, which in most cases signifies a timeout condition.

Remarks
Depending upon the actual need, the function may be used to return the data in a form of an
array of bytes, unsigned short integers (16 bits), or unsigned long integers (32 bits). The latter
option of passing a pointer to an array of unsigned long integers is meaningful when  xxusb
data buffering option is used (bit 7=128 of the global register) that requires data 32-bit data
alignment.

6.14  xxusb_bulk_write

The xxusb_bulk_write function writes a character array to the USB port FIFO of XX-USB.

WORD xxusb_bulk_write{
HANDLE hDevice,
xxxx *pData,
WORD wDataLen,
WORD wTimeout

};

Parameters
hDevice

[in] Handle to the XX-USB device.
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pData
[out] pointer to an array storing the data to be sent; the array may be declared as byte,
unsigned short, or unsigned long.

wDataLen
[in] Number of bytes to read. This number must be not less than the number of bytes
stored in the output FIFO.

wTimeout
[in] Time in milliseconds, after which the I/O operation is canceled, should there be no
data available for the readout.

Return Values
On success, the function returns the number of bytes read from XX-USB. Function returns a
negative number on a failure, which in most cases signifies a timeout condition.

Remarks
Depending upon the actual need, the function may be used to pass to xxusb the data in a form
of an array of bytes, unsigned short integers (16 bits), or unsigned long integers (32 bits).

6.15  xxusb_flashblock_program

The xxusb_flashblock_program function programs one sector of 256 bytes of the flash
memory (FPGA configuration memory)

WORD xxusb_usbfifo_read{
HANDLE hDevice,
UCHAR *pData,

};

Parameters
hDevice

[in] Handle to the XX-USB device.
pData

[out] Pointer to the configuration (byte) data array.

Return Values
On success, the function returns the number of bytes written to XX-USB – the correct
number is 518.
Function returns a negative number on a failure, which in most cases signifies a timeout
condition.

Remarks
To program the flash memory, one must call repeatedly xxusb_flashblock_program, while
pausing for at least 30ms between consecutive calls and incrementing the pointer to the data
array by 256 on each consecutive call. The device must be in programming mode with the
rotary selector in one of the 4 “P” positions and with the red “Fail” LED on.



WIENER, Plein & Baus GmbH 50 www.wiener-d.com

The configuration file of a XC3S200 FPGA of VM-USB will occupy 512 sectors of flash
memory (512 calls to the xxusb_flashblock_program). The XC3S400 FPGA of VM-USB
will occupy 830 sectors of flash memory.

7 VM_USB SPECIFIC FUNCTIONS
The following functions are specific to the VM_USB.  They are built on top of the general
purpose functions described in section 6 and provide users with an easier and more
transparent way of communicating with the controller.

7.1 VME_register_write

The VME_register_write function  writes to the internal registers of the VM_USB as
described in section 3.4.

short VME_register_write{
HANDLE hDevice,
USHORT Address,
LONG Data

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address

[in] VME offset of the register you wish to write to
Data

[in] Data to be written to the specified register

Return Values
On success, the function returns the number of bytes written to VM-USB
Function returns a negative number on a failure

7.2 VME_register_read

The VME_register_read function reads from the internal registers of the VM_USB as
described in section 3.4.

short VME_register_read{
HANDLE hDevice,
USHORT Address,
LONG Data

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address
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[in] VME offset to read from, as specified in Section 3.4
Data

[out] Data read from the specified register

Return Values
On success, the function returns the number of bytes read from the VM-USB
Function returns a negative number on a failure

7.3 VME_DGG

The VME_DGG function allows the user to setup the characteristics of the Delay and
Generator channels of  the VM_USB.

short VME_DGG{
HANDLE hDevice,
USHORT channel,
USHORT trigger,
USHORT output,
LONG delay,
USHORT gate,
USHORT invert,
USHORT latch

};

Parameters
hDevice

[in] Handle to the XX-USB device.
channel

[in] The DGG channel you wish to modify.  Valid values are:
0 – For DGG channel A
1 – For DGG channel B

trigger
[in] Determines the start of the DGG.  Valid Values are:

0 – Channel Disabled
1 – NIM input 1
2 – NIM input 2
3 – Event Trigger

              4 - End of Event
               5 - USB Trigger
               6 - Pulser

output
[in] Determines the NIM ouput used for the DGG channel.  Valid values are:

0 – NIM O1
1 – NIM O2

delay
[in] 32 bit word in steps of 12.5ns between trigger and start of gate consisting of

lower 16 bits: Delay_fine
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upper 16 bits: Delay_coarse
gate

[in] Sets the length of the gate in units of 12.5ns
invert

[in] Determines whether or not the DGG is inverted. Valid values are:
0 – Not inverted
1 – Is inverted

latch
[in] Determines whether or not the DGG is latched.  Valid values are:

0 – Not latched
1 – Is latched

Return Values
On success, the function returns 1
Function returns a negative number on a failure

7.4 VME_LED_settings

The VME_LED_settings function allows the user to setup the LEDs on the front panel of the
VM_USB.  Details about the LED settings are found in section 3.4.4.

short VME_LED_settings{
HANDLE hDevice,
USHORT LED,
USHORT code,
USHORT invert,
USHORT latch

};

Parameters
hDevice

[in] Handle to the XX-USB device.
LED

[in] The LED you wish to modify.  Valid values are:
0 – Top YELLOW
1 – RED
2 – GREEN
3 – Bottom Yellow

code
[in] Determines what event the LED is linked to.  Valid valuesare 0-7 and are described

in section 3.4.3
invert

[in] Determines whether or not the LED is inverted. Valid values are:
0 – Not inverted
1 – Is inverted

latch
[in] Determines whether or not the LED is latched.  Valid values are:
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0 – Not latched
1 – Is latched

Return Values
On success, the function returns the number of bytes from from the VM_USB.
Function returns a negative number on a failure

7.5 VME_Output_settings

The VME_Output_settings function allows the user to setup the NIM outputs on the front
panel of the VME_USB.  Details about the output settings are found in section 3.4.5

short VME_Output_settings{
HANDLE hDevice,
USHORT Channel,
USHORT code,
USHORT invert,
USHORT latch

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Channel

[in] The NIIM output channel you wish to modify.  Valid values are:
1 – O1
2 – O2

code
[in] Determines what event the output is linked to.  Valid valuesare 0-7 and are

described in section 2.4.5
invert

[in] Determines whether or not the output is inverted. Valid values are:
0 – Not inverted
1 – Is inverted

latch
[in] Determines whether or not the output is latched.  Valid values are:

0 – Not latched
1 – Is latched

Return Values
On success, the function returns the number of bytes from from the VM_USB.
Function returns a negative number on a failure

7.6 VME_scaler _settings

Configures the internal VM-USB scaler (SelSource register)
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 short  VME_scaler_settings{
usb_dev_handle *hdev,
short channel,
short trigger,
int enable,
int reset}

Parameters:
hDevice

[in] Handle to the XX-USB device
channel

[in] The number which corresponds to the scaler channel:
            0 - for Scaler A
            1 - for Scaler B

code
 [in] The Output selector code, valid values are listed in the manual

enable
 [in]  =1 enables scaler

    latch
 [in] =1 resets the scaler at time of call

Return Values
On success, the function returns the number of bytes from from the VM_USB.
Function returns a negative number on a failure.

7.7 VME_write_32

The VME_write_32 function writes a 32 bit word to a VME address.

short VME_write_32{
HANDLE hDevice,
USHORT Address_Modifier,
LONG VME_Address,
LONG Data

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address_Modifier

[in] VME Address modifier
VME_Address

[in] VME address to write Data to
Data

[in] data written to the VM_USB

Return Values
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On success, the function returns the number of bytes written to VM-USB
Function returns a negative number on a failure.

7.8 VME_read_32

The VME_read_32 function reads a 32 bit word from a VME address.

short VME_read_32{
HANDLE hDevice,
USHORT Address_Modifier,
LONG VME_Address,
LONG Data

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address_Modifier

[in] VME Address modifier
VME_Address

[in] VME address to read Data from
Data

[in] data read from the VM_USB

Return Values
On success, the function returns the number of bytes read from VM-USB
Function returns a negative number on a failure

7.9 VME_write_16

The VME_write_16 function writes a 16 bit word to a VME address.

short VME_write_32{
HANDLE hDevice,
USHORT Address_Modifier,
LONG VME_Address,
LONG Data

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address_Modifier

[in] VME Address modifier
VME_Address
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[in] VME address to write Data to
Data

[in] data written to the VM_USB

Return Values
On success, the function returns the number of bytes written to VM-USB
Function returns a negative number on a failure

7.10 VME_read_16

The VME_read_16 function reads a 16 bit word from a VME address.

short VME_read_32{
HANDLE hDevice,
USHORT Address_Modifier,
LONG VME_Address,
LONG Data

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address_Modifier

[in] VME Address modifier
VME_Address

[in] VME address to read Data from
Data

[in] data read from the VM_USB

Return Values
On success, the function returns the number of bytes read from VM-USB
Function returns a negative number on a failure

7.11 VME_BLT_read_32

The VME_read_32 function performs a 32 bit block transfer from a VME address.  The
number of times the read is repeated depends on the parameters passed

short VME_read_32{
HANDLE hDevice,
USHORT Address_Modifier,
USHORT count,
LONG VME_Address,
LONG Data



WIENER, Plein & Baus GmbH 57 www.wiener-d.com

};

Parameters
hDevice

[in] Handle to the XX-USB device.
Address_Modifier

[in] VME Address modifier
count

[in] The number of times to repeat the read
VME_Address

[in] VME address to read Data from
Data

[out] pointer to an array where Data can be stored read from the VM_USB

Return Values
On success, the function returns the number of bytes read from VM-USB
Function returns a negative number on a failure



WIENER, Plein & Baus GmbH 58 www.wiener-d.com

APPENDIX A: Programming and the Use of Flash Memory

The VM-USB stores the FPGA configuration files in a 1-MByte flash memory (organized as
two 512-kByte ICs). This size of the memory allows one to accommodate up to 4
configuration files of an XC3S400 FPGA, such as used in VM-USB. The individual address
spaces of the four possible configuration files are selected by the state of two bits a front-
panel rotary selector switch. This rotary switch provides, in fact, for a 3-bit (1 out of 8)
selection, with third bit being used to select one of the two possible modes of operation –
“Configuring” (C) and “Programming” (P) modes, respectively. Normally, VM-USB is
operated in the C (C1-C4 labels) mode, with the FPGA cold-booting itself upon power up
from a selected segment of the memory, identified by the digit of the label.

The design of the VM-USB allows one to reprogram any of the four segments of the flash
memory via the USB interface.  The programming and reprogramming is possible only in the
Programming mode, selected by any of the P* settings (P1-P4 labels) of the rotary selector
and when the FPGA is kept in a reset mode by the boot manager CPLD, which is a default
after cold-booting in the P mode (red “Fail” LED on). While in the P mode, the manager
CPLD can be instructed, via the USB interface, to release the FPGA from reset. When
released from the reset state, the FPGA will attempt to boot itself from the selected segment
of  flash  memory,  with  a  successful  boot  indicated  by  the  red  “Fail”  LED  turning  off.
Subsequently, but only upon a successful boot, the CPLD can be instructed to assert again
the reset signal for the FPGA, allowing one to undertake another programming sequence.

While the VM-USB can be operated in the P mode, with the FPGA reset released, it is
recommended to switch to a respective C setting for a regular operation.

In fact, there are only two types of operations specific to P mode – programming of a 256-
byte sector of the flash memory (with automatic address increment) and toggling of the reset
status of the FPGA. Accordingly, there are two types of data buffers that must be sent to the
USB port by the host to perform the desired operation.

The sector programming buffer is 518 bytes long and contains three “sector unlock”
(AT29LV040 software protection override) data bytes and the 256 configuration file bytes in
odd bytes (counting from 0), with all even bytes being disregarded:

0 0’** don’t care
1 0’AA first “sector unlock” code
2 0’**
3 0’55 second “sector unlock” code
4 0’**
5 0’A0 third “sector unlock” code
2*n+6 0’** where n = 0 - 255
2*n+7 byte(k) consecutive byte of the configuration file

The FPGA “reset toggle” buffer is only two bytes long with the first byte being disregarded
and the second one being equal to 0’FF or decimal 255.
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In accordance with the above, to program/reprogram a segment of the flash memory one
needs to execute the following sequence:

With the FPGA booted (“Fail” LED off):

1. Set the rotary switch to a P position pointing to the desired segment => the red “Fail”
LED should turn on.

With VM-USB off or the FPGA failure to boot:

      1a. Cold-boot VM-USB with the rotary switch in the desired P position.

2. Send successively the 830 sector programming buffers containing a complete
configuration file of the XC3S400 FPGA to the USB port in bulk transfer mode,
while specifying the data length as 518 bytes and allowing at least 30ms wait time
between the consecutive buffers.

3. Send an FPGA “reset toggle” buffer, or cold-boot VM-USB in the corresponding C
mode. A successful boot will be indicated by the “Fail” LED turned off.

The use of the flash memory programming capability is largely facilitated by the availability
of dedicated libxxusb functions xxusb_flashblock_program and xxusb_reset_toggle, as
illustrated by the following sample codes written in Visual Basic:

‘Flash memory programming
For i = 0 To 829
    k = i * 256 + 1
    ll = xxusb_flashblock_program(EZHandle, bytes(k))
    DLY (30)   ‘30ms delay generator
Next i

‘Releasing or setting the FPGA reset:
ll=xxusb_reset_toggle(EZHandle)

In the above two samples, EZHandle represents the USB handle of the VM-USB and bytes()
is an array storing the desired FPGA configuration file (220 kB).
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8 APPENDIX B: USE OF MULTIPLEXED USER DEVICES

The FPGA configuration of the VM-USB may set up optionally various user devices, that are
beyond the  scope  of  a  VME controller,  but  which  are  intended  to  facilitate  and  reduce  the
cost of a data acquisition setup. The “release” firmware of the VM-USB, (Firmware Id =
85000402) sets up two delay and gate generators, DGG_A and DGG_B and two 32-bit
scalers, SCLR_A and SCLR_B.

8.1 Characteristics and the Use of Delay and Gate Generators

The two user gate and delay generators allow one to generate delays and gates in the range of
12.5 ns – approx. 800 us, with the 12.5 ns granularity.

To make use of an DGG_A or DGG_B, one simply needs to select the desired trigger signal
by properly setting the respective selector code bits in the User Devices Register and set
write the desired delay and gate data (in units of 12.5 ns) into the respective DGG register, as
described in Sections 3.4.5 and 3.4.6.

8.2 Characteristics and the Use of Scalers

The two user scalers allow one to count various signals and read out the resulting numbers in
VME-like commands. The latter commands address the VME address space allocated to the
VM-USB and do not generate any activity on the VME bus. Both scalers are asynchronous
with respect to the VM-USB clock, each using a dedicated fast clock network driven by the
selected clock signal.

The use of the scalers is straightforward and entails selecting their respective input sources
and enabling their operation by setting the respective “enable” bits. Optionally, one may wish
to disable them by resetting the respective “enable” bits or clearing them by writing “1” to
the respective “reset” bits. Note that to disable the scalers on must write 0x80000000 into the
Device Input Source Register (VME offset =16).

The two scalers can be daisy-chained into one huge 64-bit scaler. One does this by specifying
the terminal count of SCLR_A as an input for SCLR_B (default setting). One may also select
output of DGG_A as an input signal for SCLR_A. With DGG_A operated as a pulse
generator, this provides an easy way for generating time stamps up to 64 bits long.
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9 APPENDIX C: OVERVIEW OF ENHANCEMENTS NOT AVAILABLE IN
EARLY RELEASES OF VM-USB FIRMWARE

The following enhancements implemented in the VM-USB firmware with ID=0x79100900
may or may not be available in earlier releases of the firmware:

1. Multiplexed 64-bit block transfer (MBLT) in read mode.

2. Enhanced multi-block transfer, both BLT and (64-bit) MBLT (read only) with
arbitrary starting address. The total number of transfers may be as large as
2^23=8388608 32-bit words (BLT) or 2^22=4194304 64-bit words (MBLT).

3. Up to 8 command stacks can be set up, with Stack ID=0-7, within the allocated
memory  of  2kBytes  =  1kWords.  The  starting  addresses  of  stacks  can  be  set
arbitrarily. While stacks with ID=2-7 are dedicated to interrupt handling, stacks with
ID=0 and 1 are of dual use. Unless the latter stacks are used for interrupt handling,
they default to a regular stack with ID=0, executed upon trigger pulse (NIM I1 or
USBStart) and the periodic stack with ID=1 (scaler stack). To allow writing to the
stacks and reading back their content, the internal device address space has been
expanded to include the additional 2 bits required to identify the stack (in addition to
bit  0).  The  stack  ID is  sent  to  VM-USB in  the  first  word  (2  bytes)  of  the  USB out
packet, with bit 0 of the ID mapped to bit 0 of the address word and bits 1 and 2 to
bits 4 (value 16) and 5 (value 32) of the address word, respectively. The 9 least
significant bits of the second word of the out packet (disregarded in earlier versions of
the firmware) define the starting address (0 – 1023, with wrap-around) of the
particular stack within the 1kWord stack memory space.

4. Interrupt handling is provided, with all 7 IRQs (1 – 7) being monitored, when so
desired. Any Stack ID can be linked to any combination of IRQ and the IRQ-ID
returned by the requestor module, such that one Stack ID can be shared by many
interrupts. Upon detection of a valid interrupt, VM-USB executes the stack linked to
this particular interrupt. The interrupt service vectors are stored in four registers, two
vectors per register. Each vector identifies in its 8 least significant bits the IRQ-ID (to
be received from the requestor upon interrupt acknowledge IACK), in bits 8-10
(starting from bit 0) the IRQ level (1-7), and in bits 12-14 the ID (0-7) of the
associated stack. The vector is disregarded whenever the IRQ-ID is set to zero, e.g.,
allowing  one  to  use  Stacks  0  and  1  as  regular  and  periodic  (scaler)  stacks,
respectively. The vectors are stored at addresses (offsets) 40, 44, 48, and 52 in
arbitrary order.

5. As an IRQ handler, VM-USB can handle IRQ IDs up to 16 bits long.

6. The 3-bit stack ID is stored in bits 13-15 (counting from 0) of the event header word.
Unless a mixed-event option is selected for data buffering (recommended for
increased band width), the buffers will contain events with identical stack IDs.
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7. A pulser option is available in configuring DGGs, such that the DGG is retriggered
with the trailing edge of the gate pulse. With this option selected, the DGG will
produce a train of pulses of width equal to the set gate width and the period equal to
the sum of set delay and gate widths.

8. Software triggering (soft IRQ) of the execution of any stack is possible while VM-
USB is being operated in autonomous DAQ mode. This is achieved by writing to bits
8-15 of the Action Register.

9. In the dynamical block sizing, the number extraction mask is supplied by an
Auxiliary Data Word of the number extraction command, allowing for multiple
extraction masks within command stacks. The number extraction mask register at
address 0x24 is not used.

10. Wait states of programmable length may be inserted into command stacks, causing
VM-USB to pause before executing the next command in the stack.

11. One can force an immediate scaler buffer dump after a scaler event is processed.

12. One  can  set  up  data  buffering  so  as  to  have  a  fixed  desired  number  of  events  in  a
buffer.


