Subversion Repositories f9daq

Rev

Rev 151 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

// WIENER SNMP basic SNMP library to Demonstrate C-Access to WIENER-Crates via SNMP
// modified for LabView import 04/23/06, Andreas Ruben
//
// The path to the Net-SNMP include files (default /usr/include) must be added to the
// include file search path!
// The following libraries must be included:
// netsnmp.lib ws2_32.lib
// The path to the Net-SNMP library must be added to the linker files.
// /usr/lib
// path for the WIENER MIB file (mibdirs) c:/usr/share/snmp/mibs

#include <windows.h>
#include "toolbox.h"
#include <ansi_c.h>
#include "WIENER_SNMP.h"

#define VER_FILEVERSION             1,1,1,0
#define VER_FILEVERSION_STR         "1.1.1.0\0"

#ifdef _MSC_VER
#define strdup _strdup
#define vsnprintf vsprintf_s
#define strPrintf sprintf_s
#else
#define strdup StrDup
#define strPrintf snprintf
#endif

#ifndef UNREFERENCED_PARAMETER
#define UNREFERENCED_PARAMETER(P) (void)(P)
#endif

#define false 0;
#define true  1;


static const char WienerMibFileName[] = "WIENER-CRATE-MIB";
static const char DefaultReadCommunity[] = "public";  ///< default community name for read operations
static const char DefaultWriteCommunity[] = "guru";   ///< default community name for write operation

static char *m_readCommunity = (char *)DefaultReadCommunity;
static char *m_writeCommunity = (char *)DefaultWriteCommunity;

/**
 * @brief The SnmpObject class is used internally to resolve OIDs and for the SNMP calls.
 */

//class SnmpObject {
//public:
typedef struct {
        oid    id[MAX_OID_LEN]; ///< The resolved SNMP OID
        size_t len;             ///< The resolved OIDs length in byte
        char   desc[100];       ///< The OIDs textual representation, e.g. "sysDescr.0"
} SnmpObject;
//typedef struct snmp_object SnmpObject;

static SnmpObject moduleIndex[MaxSlotsPerCrate];
static SnmpObject moduleDescription[MaxSlotsPerCrate];
static SnmpObject moduleSupply[MaxModuleAuxSupplies][MaxSlotsPerCrate];
static SnmpObject moduleHardwareLimitVoltage[MaxSlotsPerCrate];
static SnmpObject moduleHardwareLimitCurrent[MaxSlotsPerCrate];
static SnmpObject moduleRampSpeedVoltage[MaxSlotsPerCrate];
static SnmpObject moduleRampSpeedCurrent[MaxSlotsPerCrate];
static SnmpObject moduleStatus[MaxSlotsPerCrate];
static SnmpObject moduleEventStatus[MaxSlotsPerCrate];
static SnmpObject moduleDoClear[MaxSlotsPerCrate];
static SnmpObject moduleAuxiliaryMeasurementTemperature[MaxModuleAuxTemperatures][MaxSlotsPerCrate];

static SnmpObject sysDescr;
static SnmpObject sysMainSwitch;
static SnmpObject sysStatus;
static SnmpObject sysVmeSysReset;
static SnmpObject outputNumber;
static SnmpObject groupsNumber;
static SnmpObject highVoltageGroupsSwitch;
static SnmpObject lowVoltageGroupsSwitch;
static SnmpObject ipStaticAddress;

static SnmpObject outputName[MaxChannelsPerCrate];
static SnmpObject outputIndex[MaxChannelsPerCrate];
static SnmpObject outputGroup[MaxChannelsPerCrate];
static SnmpObject outputStatus[MaxChannelsPerCrate];
static SnmpObject outputMeasurementSenseVoltage[MaxChannelsPerCrate];
static SnmpObject outputMeasurementTerminalVoltage[MaxChannelsPerCrate];
static SnmpObject outputMeasurementCurrent[MaxChannelsPerCrate];
static SnmpObject outputMeasurementTemperature[MaxChannelsPerCrate];
static SnmpObject outputSwitch[MaxChannelsPerCrate];
static SnmpObject outputVoltage[MaxChannelsPerCrate];
static SnmpObject outputCurrent[MaxChannelsPerCrate];
static SnmpObject outputVoltageRiseRate[MaxChannelsPerCrate];
static SnmpObject outputVoltageFallRate[MaxChannelsPerCrate];
static SnmpObject outputCurrentRiseRate[MaxChannelsPerCrate];
static SnmpObject outputCurrentFallRate[MaxChannelsPerCrate];
static SnmpObject outputSupervisionBehavior[MaxChannelsPerCrate];
static SnmpObject outputSupervisionMinSenseVoltage[MaxChannelsPerCrate];
static SnmpObject outputSupervisionMaxSenseVoltage[MaxChannelsPerCrate];
static SnmpObject outputSupervisionMaxTerminalVoltage[MaxChannelsPerCrate];
static SnmpObject outputSupervisionMaxCurrent[MaxChannelsPerCrate];
static SnmpObject outputSupervisionMaxTemperature[MaxChannelsPerCrate];
static SnmpObject outputConfigMaxSenseVoltage[MaxChannelsPerCrate];
static SnmpObject outputConfigMaxTerminalVoltage[MaxChannelsPerCrate];
static SnmpObject outputConfigMaxCurrent[MaxChannelsPerCrate];
static SnmpObject outputSupervisionMaxPower[MaxChannelsPerCrate];
static SnmpObject outputTripTimeMaxCurrent[MaxChannelsPerCrate];

static SnmpObject sensorNumber;
static SnmpObject sensorTemperature[MaxSensors];
static SnmpObject sensorWarningThreshold[MaxSensors];
static SnmpObject sensorFailureThreshold[MaxSensors];

//static SnmpObject psFirmwareVersion;
static SnmpObject psSerialNumber;
static SnmpObject psOperatingTime;
static SnmpObject psDirectAccess;
static SnmpObject fanNumberOfFans;
static SnmpObject fanOperatingTime;
//static SnmpObject fanFirmwareVersion;
static SnmpObject fanSerialNumber;
static SnmpObject fanAirTemperature;
static SnmpObject fanSwitchOffDelay;
static SnmpObject fanNominalSpeed;
static SnmpObject fanSpeed[MaxFans];

static SnmpObject psAuxVoltage[MaxPsAuxSupplies];
static SnmpObject psAuxCurrent[MaxPsAuxSupplies];

static SnmpObject snmpCommunityName[MaxCommunities];

//static double snmpSetDouble(HSNMP session, const SnmpObject &object, double value);
static double snmpSetDouble(HSNMP session, const SnmpObject *object, double value);
double snmpGetDouble(HSNMP session, const SnmpObject *object);
static int    snmpSetInt(HSNMP session, const SnmpObject *object, int value);
int    snmpGetInt(HSNMP session, const SnmpObject *object);
static char  *snmpGetString(HSNMP session, const SnmpObject *object);

char snmpStringBuffer[1024];
char snmpLastErrorBuffer[1024];

SnmpDoubleBuffer snmpDoubleBuffer;
SnmpIntegerBuffer snmpIntegerBuffer;

#ifdef _MSC_VER

BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call, LPVOID lpReserved)
{
        UNREFERENCED_PARAMETER(hModule);
        UNREFERENCED_PARAMETER(ul_reason_for_call);
        UNREFERENCED_PARAMETER(lpReserved);

        return TRUE;
}

#endif

/**
 * @brief Simple logging function with printf-like usage.
 * @internal
 * @param priority
 * @param format
 */

static void sysLog(int priority, const char *format, ...)
{
        UNREFERENCED_PARAMETER(priority);

        va_list vaPrintf;
        va_start(vaPrintf, format);
        vprintf(format, vaPrintf);
        putchar('\n');

        // store errors in snmpLastErrorBuffer, which can be read by snmpGetLastError()
        if (priority == LOG_ERR)
                vsnprintf(snmpLastErrorBuffer, sizeof(snmpLastErrorBuffer), format, vaPrintf);

        va_end(vaPrintf);
}

// Helper functions

/**
 * @brief Resolves the OID from the textual SNMP description
 * and stores the OID in *object.
 * @internal
 * @param node e.g. "sysMainSwitch"
 * @param object the resolved OID
 * @return true on success, false otherwise
 */

//static int getNode(const char * const node, SnmpObject *object)
int getNode(const char * const node, SnmpObject *object)
{
        object->len = MAX_OID_LEN;
        if (!get_node(node, object->id, &object->len)) {
                snmp_log(LOG_ERR, "OID %s not found!\n", node);
                return false;
        }

#ifdef _MSC_VER
        strcpy_s(object->desc, sizeof(object->desc), node);
#else
        strncpy(object->desc, node, sizeof(object->desc));
#endif

        return true;
}

/**
 * @brief Resolves the OID from the textual SNMP description
 * with appended index and stores the OID in *object.
 * @internal
 * @param nodeBase e.g. "outputSwitch"
 * @param index e.g. 100
 * @param object the resolved OID
 * @return true on success, false otherwise
 */

static int getIndexNode(const char * const nodeBase, int index, SnmpObject *object)
{
        char node[100];

        strPrintf(node, sizeof(node), "%s.%i", nodeBase, index);

        return getNode(node, object);
}

/**
 * @brief Activates logging on stderr console.
 * @since 1.1
 * @note This is the default setting.
 */

void snmpSetStdErrLog(void)
{
        snmp_enable_stderrlog();
}

/**
 * @brief Activates logging to the file filename.
 * @since 1.1
 * @param fileName The full path to the file where all log
 * information should go to.
 * @note If the specified file already exists,
 * new log information is appended.
 */

void snmpSetFileLog(const char * const fileName)
{
        snmp_enable_filelog(fileName, 1);
}

/**
 * @brief Returns the library four digit version number as unsigned int value.
 *
 * This allows to check for a specific version number.
 * @since 1.1
 * @return The version number as unsigned long value, e.g. 0x01010000
 */

unsigned int snmpGetVersion(void)
{
        const uint32_t version[] = { VER_FILEVERSION };

        return (version[0] << 24) + (version[1] << 16) + (version[2] << 8) + version[3];
}

/**
 * @brief Returns the library four digit version number as null-terminated string.
 *
 * The digits are separated by dots.
 * @since 1.1
 * @return The version number, e.g. "1.1.0.3"
 */

char *snmpGetVersionString(void)
{
        return VER_FILEVERSION_STR;
}

/**
 * @brief Setup the default conditions for logging and SNMP passwords.
 * @internal
 */

static void setDefaultSettings(void)
{
        snmpSetStdErrLog();

        m_readCommunity = (char *)DefaultReadCommunity;
        m_writeCommunity = (char *)DefaultWriteCommunity;

        memset(snmpLastErrorBuffer, 0, sizeof(snmpLastErrorBuffer));
}

/**
 * @brief SNMP Initialization.
 *
 * Resolves all needed OIDs from the MIB file and prepares the SNMP communication.
 * The actual connection to a MPOD crate is done with snmpOpen().
 * @return true on success, false otherwise (e.g. an OID could not be resolved)
 */

int snmpInit(void)
{
        setDefaultSettings();

        snmp_log(LOG_DEBUG, "*** Initialise SNMP ***\n");

        init_snmp("WIENER_SNMP_DLL");
        init_mib();                                                             // init MIB processing
        if (!read_module(WienerMibFileName)) {          // read specific mibs
                snmp_log(LOG_ERR, "Unable to load SNMP MIB file \"%s\"\n", WienerMibFileName);
                return false;
        }
        snmp_log(LOG_DEBUG, "*** Translate OIDs ***\n");

        // Translate System OIDS
        getNode("sysDescr.0", &sysDescr); // FIXME: doesn't work atm in Linux

        if (
                (!getNode("sysMainSwitch.0",      &sysMainSwitch)) ||
                (!getNode("sysStatus.0",          &sysStatus)) ||
                (!getNode("sysVmeSysReset.0",     &sysVmeSysReset)) ||
                (!getNode("outputNumber.0",       &outputNumber)) ||
                (!getNode("groupsNumber.0",       &groupsNumber)) ||
                (!getNode("groupsSwitch.64",      &highVoltageGroupsSwitch)) ||
                (!getNode("groupsSwitch.128",     &lowVoltageGroupsSwitch)) ||
                (!getNode("ipStaticAddress.0",    &ipStaticAddress)) ||
//              (!getNode("psFirmwareVersion.0",  &psFirmwareVersion)) ||
                (!getNode("psSerialNumber.0",     &psSerialNumber)) ||
                (!getNode("psOperatingTime.0",    &psOperatingTime)) ||
                (!getNode("psDirectAccess.0",     &psDirectAccess)) ||
                (!getNode("sensorNumber.0",       &sensorNumber)) ||
//              (!getNode("fanFirmwareVersion.0", &fanFirmwareVersion)) ||
                (!getNode("fanSerialNumber.0",    &fanSerialNumber)) ||
                (!getNode("fanOperatingTime.0",   &fanOperatingTime)) ||
                (!getNode("fanAirTemperature.0",  &fanAirTemperature))||
                (!getNode("fanSwitchOffDelay.0",  &fanSwitchOffDelay)) ||
                (!getNode("fanNominalSpeed.0",    &fanNominalSpeed)) ||
                (!getNode("fanNumberOfFans.0",    &fanNumberOfFans))
        ) {
                return false;
        }

        // Translate module and channel information OIDs
        for (int slot = 0; slot < MaxSlotsPerCrate; ++slot) {

                if (
                        (!getIndexNode("moduleIndex", slot + 1, &moduleIndex[slot])) ||
                        (!getIndexNode("moduleDescription", slot + 1, &moduleDescription[slot])) ||
                        (!getIndexNode("moduleAuxiliaryMeasurementVoltage0", slot + 1, &moduleSupply[0][slot])) ||
                        (!getIndexNode("moduleAuxiliaryMeasurementVoltage1", slot + 1, &moduleSupply[1][slot])) ||
                        (!getIndexNode("moduleAuxiliaryMeasurementTemperature0", slot + 1, &moduleAuxiliaryMeasurementTemperature[0][slot])) ||
                        (!getIndexNode("moduleAuxiliaryMeasurementTemperature1", slot + 1, &moduleAuxiliaryMeasurementTemperature[1][slot])) ||
                        (!getIndexNode("moduleAuxiliaryMeasurementTemperature2", slot + 1, &moduleAuxiliaryMeasurementTemperature[2][slot])) ||
                        (!getIndexNode("moduleAuxiliaryMeasurementTemperature3", slot + 1, &moduleAuxiliaryMeasurementTemperature[3][slot])) ||
                        (!getIndexNode("moduleHardwareLimitVoltage", slot + 1, &moduleHardwareLimitVoltage[slot])) ||
                        (!getIndexNode("moduleHardwareLimitCurrent", slot + 1, &moduleHardwareLimitCurrent[slot])) ||
                        (!getIndexNode("moduleRampSpeedVoltage", slot + 1, &moduleRampSpeedVoltage[slot])) ||
                        (!getIndexNode("moduleRampSpeedCurrent", slot + 1, &moduleRampSpeedCurrent[slot])) ||
                        (!getIndexNode("moduleStatus", slot + 1, &moduleStatus[slot])) ||
                        (!getIndexNode("moduleEventStatus", slot + 1, &moduleEventStatus[slot])) ||
                        (!getIndexNode("moduleDoClear", slot + 1, &moduleDoClear[slot]))
                ) {
                        return false;
                }

                int base = MaxChannelsPerSlot * slot; // array index

                for (int channel = base; channel < base + MaxChannelsPerSlot; ++channel) {
                        if (
                                (!getIndexNode("outputName", channel + 1, &outputName[channel])) ||
                                (!getIndexNode("outputIndex", channel + 1, &outputIndex[channel])) ||
                                (!getIndexNode("outputGroup", channel + 1, &outputGroup[channel])) ||
                                (!getIndexNode("outputStatus", channel + 1, &outputStatus[channel])) ||
                                (!getIndexNode("outputMeasurementSenseVoltage", channel + 1, &outputMeasurementSenseVoltage[channel])) ||
                                (!getIndexNode("outputMeasurementTerminalVoltage", channel + 1, &outputMeasurementTerminalVoltage[channel])) ||
                                (!getIndexNode("outputMeasurementCurrent", channel + 1, &outputMeasurementCurrent[channel])) ||
                                (!getIndexNode("outputMeasurementTemperature", channel + 1, &outputMeasurementTemperature[channel])) ||
                                (!getIndexNode("outputSwitch", channel + 1, &outputSwitch[channel])) ||
                                (!getIndexNode("outputVoltage", channel + 1, &outputVoltage[channel])) ||
                                (!getIndexNode("outputCurrent", channel + 1, &outputCurrent[channel])) ||
                                (!getIndexNode("outputVoltageRiseRate", channel + 1, &outputVoltageRiseRate[channel])) ||
                                (!getIndexNode("outputVoltageFallRate", channel + 1, &outputVoltageFallRate[channel])) ||
                                (!getIndexNode("outputCurrentRiseRate", channel + 1, &outputCurrentRiseRate[channel])) ||
                                (!getIndexNode("outputCurrentFallRate", channel + 1, &outputCurrentFallRate[channel])) ||
                                (!getIndexNode("outputSupervisionBehavior", channel + 1, &outputSupervisionBehavior[channel])) ||
                                (!getIndexNode("outputSupervisionMinSenseVoltage", channel + 1, &outputSupervisionMinSenseVoltage[channel])) ||
                                (!getIndexNode("outputSupervisionMaxSenseVoltage", channel + 1, &outputSupervisionMaxSenseVoltage[channel])) ||
                                (!getIndexNode("outputSupervisionMaxTerminalVoltage", channel + 1, &outputSupervisionMaxTerminalVoltage[channel])) ||
                                (!getIndexNode("outputSupervisionMaxCurrent", channel + 1, &outputSupervisionMaxCurrent[channel])) ||
//                              (!getIndexNode("outputSupervisionMaxTemperature", channel + 1, &outputSupervisionMaxTemperature[channel])) ||
                                (!getIndexNode("outputConfigMaxSenseVoltage", channel + 1, &outputConfigMaxSenseVoltage[channel])) ||
                                (!getIndexNode("outputConfigMaxTerminalVoltage", channel + 1, &outputConfigMaxTerminalVoltage[channel])) ||
                                (!getIndexNode("outputSupervisionMaxPower", channel + 1, &outputSupervisionMaxPower[channel])) ||
                                (!getIndexNode("outputConfigMaxCurrent", channel + 1, &outputConfigMaxCurrent[channel])) ||
                                (!getIndexNode("outputTripTimeMaxCurrent", channel + 1, &outputTripTimeMaxCurrent[channel]))
                        ) {
                                return false;
                        }
                }
        }

        for (int sensor = 0; sensor < MaxSensors; ++sensor)
                if (
                        (!getIndexNode("sensorTemperature", sensor + 1, &sensorTemperature[sensor])) ||
                        (!getIndexNode("sensorWarningThreshold", sensor + 1, &sensorWarningThreshold[sensor])) ||
                        (!getIndexNode("sensorFailureThreshold", sensor + 1, &sensorFailureThreshold[sensor]))
                ) {
                        return false;
                }

        for (int name = 0; name < MaxCommunities; ++name)
                if (!getIndexNode("snmpCommunityName", name + 1, &snmpCommunityName[name]))
                        return false;

        for (int fan = 0; fan < MaxFans; ++fan)
                if (!getIndexNode("fanSpeed", fan + 1, &fanSpeed[fan]))
                        return false;

        for (int aux = 0; aux < MaxPsAuxSupplies; ++aux) {
                if (
                        (!getIndexNode("psAuxiliaryMeasurementVoltage", aux + 1, &psAuxVoltage[aux])) ||
                        (!getIndexNode("psAuxiliaryMeasurementCurrent", aux + 1, &psAuxCurrent[aux]))
                ) {
                        return false;
                }
        }

        snmp_log(LOG_DEBUG, "*** Initialise SNMP done ***\n");
        SOCK_STARTUP;                                                                                   // only in main thread

        return true;
}

/**
 * @brief Additional cleanup. Should be called after snmpClose.
 */

void snmpCleanup(void)
{
        SOCK_CLEANUP;
}

/**
 * @brief Set a new read community name for SNMP access.
 *
 * The read community name has to match the configured read community name in the MPOD.
 * The default read community name is "public".
 * @since 1.1
 * @note This function must be called before snmpOpen().
 * @param readCommunityName the new read community name
 */

void snmpSetReadCommunityName(const char * const readCommunityName)
{
        m_readCommunity = strdup(readCommunityName);
}

/**
 * @brief Set a new write community name for SNMP access.
 *
 * The write community name has to match the configured write community name in the MPOD.
 * The default write community name is "guru".
 * @since 1.1
 * @note This function must be called before any write access function.
 * @param writeCommunityName the new write community name
 */

void snmpSetWriteCommunityName(const char * const writeCommunityName)
{
        m_writeCommunity = strdup(writeCommunityName);
}

/**
 * @brief Opens a SNMP session to the specified ipAddress.
 *
 * This function also sets the number of retries and the timeout value.
 * @param ipAddress a zero-terminated ASCII string representation
 * of an IPv4 address, e.g. "192.168.17.101"
 * @return a handle to the opened SNMP session, which is a required
 * parameter for any further call.
 */

HSNMP snmpOpen(const char * const ipAddress)
{
        HSNMP session;
        struct snmp_session snmpSession;
        snmp_sess_init(&snmpSession);                  // structure defaults
        snmpSession.version = SNMP_VERSION_2c;
        snmpSession.peername = strdup(ipAddress);
        snmpSession.community = (u_char *)strdup(m_readCommunity);
        snmpSession.community_len = strlen(m_readCommunity);

        snmpSession.timeout = 300000;   // timeout (us)
        snmpSession.retries = 2;        // retries

        if (!(session = snmp_sess_open(&snmpSession))) {
                int liberr, syserr;
                char *errstr;
                snmp_error(&snmpSession, &liberr, &syserr, &errstr);
                snmp_log(LOG_ERR, "Open SNMP session for host \"%s\": %s\n", ipAddress, errstr);
                free(errstr);
                return 0;
        }

        snmp_log(LOG_INFO, "SNMP session for host \"%s\" opened\n", ipAddress);
        return session;
}

/**
 * @brief Closes the previously opened session specified by session.
 * @param session The handle returned by snmpOpen()
 */

void snmpClose(HSNMP session)
{
        if (!session)
                return;

        if (!snmp_sess_close(session))
                snmp_log(LOG_ERR, "Close SNMP session: ERROR\n");
        else
                snmp_log(LOG_INFO, "SNMP session closed\n");
}

/**
 * @brief Returns a pointer to a descriptive string for the last failed SNMP operation.
 * @return a pointer to a zero-terminated error string for the last failed
 * SNMP operation. Note: this pointer is valid until the next string operation.
 */

char *snmpGetLastError(void)
{
        return snmpLastErrorBuffer;
}

// System Information Functions

/**
 * @brief Returns a pointer to the MPOD controller description string.
 *
 * The pointer is valid until the next call of any string function.
 * @param session The handle returned by snmpOpen()
 * @return the MPOD controller description string, containing the
 * controller serial number and firmware releases, e.g.:
 * "WIENER MPOD (4388090, MPOD 2.1.2098.1, MPODslave 1.09, MPOD-BL 1.50 )"
 */

char *getSysDescr(HSNMP session)
{
        return snmpGetString(session, &sysDescr);
}

/**
 * @brief Returns the crate power on/off status.
 *
 * The result is the logical "and" between the hardware main switch
 * and the setMainSwitch function.
 * @param session The handle returned by snmpOpen()
 * @return The current on/off status of the crate:
 * 0: crate is powered off
 * 1: crate is powered on
 */

int getMainSwitch(HSNMP session)
{
        return snmpGetInt(session, &sysMainSwitch);
}

/**
 * @brief Sets the crate main switch to 1 = on or 0 = off.
 *
 * If the hardware main switch is set to "0" position, this function always returns 0.
 * @param session The handle returned by snmpOpen()
 * @param value 0 = set off, 1 = set on
 * @return The new on/off status of the crate.
 */

int setMainSwitch(HSNMP session, int value)
{
        return snmpSetInt(session, &sysMainSwitch, value);
}

/**
 * @brief Returns a bit field with the status of the complete crate.
 * @param session The handle returned by snmpOpen()
 * @return The complete crate status.
 */

int getMainStatus(HSNMP session)
{
        return snmpGetInt(session, &sysStatus);
}

/**
 * @brief Returns the VME system reset status.
 * @param session The handle returned by snmpOpen()
 * @return
 */

int getVmeReset(HSNMP session)
{
        return snmpGetInt(session, &sysVmeSysReset);
}

/**
 * @brief Initiate a VME system reset.
 * @param session The handle returned by snmpOpen()
 * @return
 */

int setVmeReset(HSNMP session)
{
        return snmpSetInt(session, &sysVmeSysReset, 1);
}

/**
 * @brief Returns the static IP address as 32 bit integer.
 * @param session The handle returned by snmpOpen()
 * @return The static IP address.
 */

int getIpStaticAddress(HSNMP session)
{
        return snmpGetInt(session, &ipStaticAddress);
}

/**
 * @brief Sets a new static IP address.
 * @param session The handle returned by snmpOpen()
 * @param value The IP address as 32 bit integer
 * @return
 */

int setIpStaticAddress(HSNMP session, int value)
{
        return snmpSetInt(session, &ipStaticAddress, value);
}

/**
 * @brief Returns a pointer to a string containing the MPOD controllers serial number.
 *
 * The pointer is valid until the next call of any string function.
 * @param session The handle returned by snmpOpen()
 * @return The crates serial number, e.g. "4388090".
 */

char *getPsSerialNumber(HSNMP session)
{
        return snmpGetString(session, &psSerialNumber);
}

// System Count Functions

/**
 * @brief Returns the total number of output channels in the crate.
 * @param session The handle returned by snmpOpen()
 * @return The total number of output channels
 */

int getOutputNumber(HSNMP session)
{
        return snmpGetInt(session, &outputNumber);
}

/**
 * @brief getOutputGroups
 * @param session The handle returned by snmpOpen()
 * @return
 */

int getOutputGroups(HSNMP session)
{
        return snmpGetInt(session, &groupsNumber);
}

// Output Channel Information

/**
 * @brief getOutputGroup
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

int getOutputGroup(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputGroup[channel]);
}

/**
 * @brief Returns the channel outputStatus register.
 * @note This function is deprecated. Use getOutputStatus() instead.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The channels outputStatus register
 */

int getChannelStatus(HSNMP session, int channel)
{
        return getOutputStatus(session, channel);
}

/**
 * @brief Returns the channel outputStatus register.
 * @since 1.1
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The channels outputStatus register
 */

int getOutputStatus(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputStatus[channel]);
}

/**
 * @brief Returns the measured output sense voltage for channel in Volt.
 * @note This is only valid for WIENER LV modules.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputSenseMeasurement(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputMeasurementSenseVoltage[channel]);
}

/**
 * @brief Returns the measured output terminal voltage for channel in Volt.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The measured output terminal voltage in Volt.
 */

double getOutputTerminalMeasurement(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputMeasurementTerminalVoltage[channel]);
}

/**
 * @brief Returns the measured output current for channel in Ampere.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The measured output measurement current in Ampere.
 */

double getCurrentMeasurement(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputMeasurementCurrent[channel]);
}

/**
 * @brief Returns the measured temperature for channel in Degree Celsius.
 * @note Only WIENER Low Voltage modules have a channel-wise temperature measurement.
 * For iseg HV modules, use getModuleAuxTemperature().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The measured output temperature in Degree Celsius.
 */

int getTemperatureMeasurement(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputMeasurementTemperature[channel]);
}

/**
 * @brief Change the state of the channel.
 * @note This function is deprecated. Use setOutputSwitch() instead.
 * @param session The handle returned by snmpOpen()
 * @param channel The channel in the range of 0...999
 * @param value One of the following: off (0), on (1),
 * resetEmergencyOff (2), setEmergencyOff (3), clearEvents (10).
 * @return
 */

int setChannelSwitch(HSNMP session, int channel, int value)
{
        return setOutputSwitch(session, channel, value);
}

/**
 * @brief Change the state of the channel.
 * @since 1.1
 * @param session The handle returned by snmpOpen()
 * @param channel The channel in the range of 0...999
 * @param value One of the following: off (0), on (1),
 * resetEmergencyOff (2), setEmergencyOff (3), clearEvents (10).
 * @return
 */

int setOutputSwitch(HSNMP session, int channel, int value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetInt(session, &outputSwitch[channel], value);
}

/**
 * @brief Returns the state of the channel.
 * @note This function is deprecated. Use getOutputSwitch() instead.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return One of the following: off (0), on (1),
 * resetEmergencyOff (2), setEmergencyOff (3), clearEvents (10).
 */

int getChannelSwitch(HSNMP session, int channel)
{
        return getOutputSwitch(session, channel);
}

/**
 * @brief Returns the state of the channel.
 * @since 1.1
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return One of the following: off (0), on (1),
 * resetEmergencyOff (2), setEmergencyOff (3), clearEvents (10).
 */

int getOutputSwitch(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputSwitch[channel]);
}

/**
 * @brief setHighVoltageGroupsSwitch
 * @param session The handle returned by snmpOpen()
 * @param value
 * @return
 */

int setHighVoltageGroupsSwitch(HSNMP session, int value)
{
        return snmpSetInt(session, &highVoltageGroupsSwitch, value);
}

/**
 * @brief getHighVoltageGroupsSwitch
 * @param session The handle returned by snmpOpen()
 * @return
 */

int getHighVoltageGroupsSwitch(HSNMP session)
{
        return snmpGetInt(session, &highVoltageGroupsSwitch);
}

/**
 * @brief setLowVoltageGroupsSwitch
 * @param session The handle returned by snmpOpen()
 * @param value
 * @return
 */

int setLowVoltageGroupsSwitch(HSNMP session, int value)
{
        return snmpSetInt(session, &lowVoltageGroupsSwitch, value);
}

/**
 * @brief getLowVoltageGroupsSwitch
 * @param session The handle returned by snmpOpen()
 * @return
 */

int getLowVoltageGroupsSwitch(HSNMP session)
{
        return snmpGetInt(session, &lowVoltageGroupsSwitch);
}

/**
 * @brief Returns the demanded output voltage for channel.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The demanded output voltage in Volt.
 */

double getOutputVoltage(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputVoltage[channel]);
}

/**
 * @brief Sets the demanded output voltage for channel.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @param value the demanded output voltage in Volt.
 * @return The demanded output voltage in Volt.
 */

double setOutputVoltage(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputVoltage[channel], value);
}

/**
 * @brief Returns the demanded maximum output current for channel.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The demanded output current in Ampere.
 */

double getOutputCurrent(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputCurrent[channel]);
}

/**
 * @brief Sets the demanded maximum output current for channel.
 * @param session The handle returned by snmpOpen()
 * @param channel The channel in the range of 0...999
 * @param value The demanded ouput current in Ampere
 * @return The demanded maximum output current in Ampere.
 */

double setOutputCurrent(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputCurrent[channel], value);
}

/**
 * @brief Returns the channel voltage rise rate in Volt/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use getModuleRampSpeedVoltage().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputRiseRate(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputVoltageRiseRate[channel]);
}

/**
 * @brief Sets the channel voltage rise rate in Volt/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use setModuleRampSpeedVoltage().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @param value
 * @return
 */

double setOutputRiseRate(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputVoltageRiseRate[channel], value);
}

/**
 * @brief Returns the channel voltage fall rate in Volt/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use getModuleRampSpeedVoltage().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputFallRate(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputVoltageFallRate[channel]);
}

/**
 * @brief Sets the channel voltage fall rate in Volt/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use setModuleRampSpeedVoltage().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @param value
 * @return
 */

double setOutputFallRate(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputVoltageFallRate[channel], value);
}

/**
 * @brief Returns the channel current rise rate in Ampere/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use getModuleRampSpeedCurrent().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputCurrentRiseRate(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputCurrentRiseRate[channel]);
}

/**
 * @brief Sets the channel current rise rate in Ampere/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use setModuleRampSpeedCurrent().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @param value
 * @return
 */

double setOutputCurrentRiseRate(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputCurrentRiseRate[channel], value);
}

/**
 * @brief Returns the channel current fall rate in Ampere/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use getModuleRampSpeedCurrent().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputCurrentFallRate(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputCurrentFallRate[channel]);
}

/**
 * @brief Sets the channel current fall rate in Ampere/second.
 *
 * @note This function is for WIENER LV only.
 * For iseg HV modules, use setModuleRampSpeedCurrent().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @param value
 * @return
 */

double setOutputCurrentFallRate(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputCurrentFallRate[channel], value);
}

/**
 * @brief Returns a bit field packed into an integer
 * which define the behavior of the output channel or power supply after failures.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

int getOutputSupervisionBehavior(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputSupervisionBehavior[channel]);
}

/**
 * @brief Set the behavior of the output channel or power supply after failures.
 *
 * For each supervision value, a two-bit field exists.
 * The enumeration of this value (..L+..H*2) is:
 *           WIENER LV devices
 *              0           ignore the failure
 *              1           switch off this channel
 *              2           switch off all channels with the same group number
 *              3           switch off the complete crate.
 *           iseg HV devices
 *              0           ignore the failure
 *              1           switch off this channel by ramp down the voltage
 *              2           switch off this channel by a emergencyOff
 *              3           switch off the whole board of the HV module by emergencyOff.
 *           The position of the bit fields in the integer value are:
 *              Bit 0, 1:   outputFailureMinSenseVoltage
 *              Bit 2, 3:   outputFailureMaxSenseVoltage
 *              Bit 4, 5:   outputFailureMaxTerminalVoltage
 *              Bit 6, 7:   outputFailureMaxCurrent
 *              Bit 8, 9:   outputFailureMaxTemperature
 *              Bit 10, 11: outputFailureMaxPower
 *              Bit 12, 13: outputFailureInhibit
 *              Bit 14, 15: outputFailureTimeout
 * @param session The handle returned by snmpOpen()
 * @param channel The channel (0...999) for which the behaviour should be set
 * @param value The 16 bit integer with bits set according the preceding table.
 * @return
 */

int setOutputSupervisionBehavior(HSNMP session, int channel, int value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetInt(session, &outputSupervisionBehavior[channel], value );
}

/**
 * @brief getOutputSupervisionMinSenseVoltage
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputSupervisionMinSenseVoltage(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputSupervisionMinSenseVoltage[channel]);
}

/**
 * @brief setOutputSupervisionMinSenseVoltage
 * @param session The handle returned by snmpOpen()
 * @param channel
 * @param value
 * @return
 */

double setOutputSupervisionMinSenseVoltage(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputSupervisionMinSenseVoltage[channel], value);
}

/**
 * @brief getOutputSupervisionMaxSenseVoltage
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputSupervisionMaxSenseVoltage(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputSupervisionMaxSenseVoltage[channel]);
}

/**
 * @brief setOutputSupervisionMaxSenseVoltage
 * @param session The handle returned by snmpOpen()
 * @param channel
 * @param value
 * @return
 */

double setOutputSupervisionMaxSenseVoltage(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputSupervisionMaxSenseVoltage[channel], value);
}

/**
 * @brief If the measured voltage at the power supply output terminals is above this value,
 * the power supply performs the function defined by setOutputSupervisionBehavior().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The maximum terminal voltage in Volt
 */

double getOutputSupervisionMaxTerminalVoltage(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputSupervisionMaxTerminalVoltage[channel]);
}

/**
 * @brief If the measured voltage at the power supply output terminals is above this value,
 * the power supply performs the function defined by setOutputSupervisionBehavior().
 * @param session The handle returned by snmpOpen()
 * @param channel the channel (0...999) to set the max. terminal voltage
 * @param value The maximum terminal voltage in Volt
 * @return
 */

double setOutputSupervisionMaxTerminalVoltage(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputSupervisionMaxTerminalVoltage[channel], value);
}

/**
 * @brief If the measured current is above this value, the power supply
 * performs the function defined by setOutputSupervisionBehavior().
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The maximum output current in Ampere
 */

double getOutputSupervisionMaxCurrent(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputSupervisionMaxCurrent[channel]);
}

/**
 * @brief If the measured current is above this value, the power supply
 * performs the function defined by setOutputSupervisionBehavior().
 * @param session The handle returned by snmpOpen()
 * @param channel The channel (0...999) to set the max. current
 * @param value The maximum current in Ampere
 * @return
 */

double setOutputSupervisionMaxCurrent(HSNMP session, int channel, double value)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetDouble(session, &outputSupervisionMaxCurrent[channel], value );
}

/**
 * @brief getOutputSupervisionMaxTemperature
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return The maximum temperature in degree Celsius
 */

int getOutputSupervisionMaxTemperature(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputSupervisionMaxTemperature[channel]);
}

/**
 * @brief getOutputConfigMaxSenseVoltage
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputConfigMaxSenseVoltage(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputConfigMaxSenseVoltage[channel]);
}

/**
 * @brief getOutputConfigMaxTerminalVoltage
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputConfigMaxTerminalVoltage(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputConfigMaxTerminalVoltage[channel]);
}

/**
 * @brief getOutputConfigMaxCurrent
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputConfigMaxCurrent(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputConfigMaxCurrent[channel]);
}

/**
 * @brief getOutputSupervisionMaxPower
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return
 */

double getOutputSupervisionMaxPower(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetDouble(session, &outputSupervisionMaxPower[channel]);
}

/**
 * @brief Returns the time span for the delayed trip function.
 * @param session The handle returned by snmpOpen()
 * @param channel The requested channel in the range of 0...999
 * @return the trip delay time (0...4000 ms)
 */

int getOutputTripTimeMaxCurrent(HSNMP session, int channel)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpGetInt(session, &outputTripTimeMaxCurrent[channel]);
}

/**
 * @brief Defines a span for the delayed trip function.
 * @param session The handle returned by snmpOpen()
 * @param channel The channel (0...999) for which to set the delayed trip
 * @param delay The trip delay time (0...4000 ms)
 * @return
 */

int setOutputTripTimeMaxCurrent(HSNMP session, int channel, int delay)
{
        if (channel < 0 || channel >= MaxChannelsPerCrate)
                return 0;

        return snmpSetInt(session, &outputTripTimeMaxCurrent[channel], delay);
}

// Sensor Information functions

int getSensorNumber(HSNMP session)
{
        return snmpGetInt(session, &sensorNumber);
}

int getSensorTemp(HSNMP session, int sensor)
{
        if (sensor < 0 || sensor > MaxSensors)
                return 0;

        return snmpGetInt(session, &sensorTemperature[sensor]);
}

int getSensorWarningTemperature(HSNMP session, int sensor)
{
        if (sensor < 0 || sensor > MaxSensors)
                return 0;

        return snmpGetInt(session, &sensorWarningThreshold[sensor]);
}

int setSensorWarningTemperature(HSNMP session, int sensor, int value)
{
        if (sensor < 0 || sensor > MaxSensors)
                return 0;

        return snmpSetInt(session, &sensorWarningThreshold[sensor], value);
}

int getSensorFailureTemperature(HSNMP session, int sensor)
{
        if (sensor < 0 || sensor > MaxSensors)
                return 0;

        return snmpGetInt(session, &sensorFailureThreshold[sensor]);
}

int setSensorFailureTemperature(HSNMP session, int sensor, int value)
{
        if (sensor < 0 || sensor > MaxSensors)
                return 0;

        return snmpSetInt(session, &sensorFailureThreshold[sensor], value);
}

// Power Supply specific Functions.

/**
 * @brief Returns the crates operating time in seconds.
 * @param session The handle returned by snmpOpen()
 * @return
 */

int getPsOperatingTime(HSNMP session)
{
        return snmpGetInt(session, &psOperatingTime);
}

double getPsAuxVoltage(HSNMP session, int auxIndex)
{
        if ( (auxIndex < 0) || (auxIndex >= MaxPsAuxSupplies) )
                return 0.0;

        return snmpGetDouble(session, &psAuxVoltage[auxIndex]);
}

double getPsAuxCurrent(HSNMP session, int auxIndex)
{
        if ( (auxIndex < 0) || (auxIndex >= MaxPsAuxSupplies) )
                return 0.0;

        return snmpGetDouble(session, &psAuxCurrent[auxIndex]);
}

// Fan Tray Functions

int getFanOperatingTime(HSNMP session)
{
        return snmpGetInt(session, &fanOperatingTime);
}

int getFanAirTemperature(HSNMP session)
{
        return snmpGetInt(session, &fanAirTemperature);
}

int getFanSwitchOffDelay(HSNMP session)
{
        return snmpGetInt(session, &fanSwitchOffDelay);
}

int setFanSwitchOffDelay(HSNMP session, int value)
{
        return snmpSetInt(session, &fanSwitchOffDelay, value);
}

/**
 * @brief Returns the MPODs fan rotation speed in revolutions per minute.
 * @param session The handle returned by snmpOpen()
 * @return
 */

int getFanNominalSpeed(HSNMP session)
{
        return snmpGetInt(session, &fanNominalSpeed);
}

/**
 * @brief Sets the MPODs fan rotation speed in revolutions per minute.
 * @param session The handle returned by snmpOpen()
 * @param value 1200..3600. 0 turns off the crates fans.
 * @return
 */

int setFanNominalSpeed(HSNMP session, int value)
{
        return snmpSetInt(session, &fanNominalSpeed, value );
}

int getFanNumberOfFans(HSNMP session)
{
        return snmpGetInt(session, &fanNumberOfFans);
}

int getFanSpeed(HSNMP session, int fan)
{
        if (fan < 0 || fan > MaxFans)
                return 0;

        return snmpGetInt(session, &fanSpeed[fan]);
}

/**
 * @brief Returns a pointer to the module description string.
 *
 * The pointer is valid until the next call of any string function.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return A string with the following contents, separated by comma and space:
 * - The module vendor ("iseg" or "WIENER")
 * - The module type name
 * - The channel number
 * - The module serial number (optional)
 * - The module firmware release (optional)
 *
 * Example: "iseg, E24D1, 24, 715070, 5.14"
 */

char *getModuleDescription(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0;

        return snmpGetString(session, &moduleDescription[slot]);
}

/**
 * @brief Returns the measured value of the modules +24 Volt line.
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot the modules slot position in the crate (0...9)
 * @return the measured +24 Volt line voltage in Volt.
 */

double getModuleSupply24(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpGetDouble(session, &moduleSupply[0][slot]);
}

/**
 * @brief Returns the measured value of the modules +5 Volt line.
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot the modules slot position in the crate (0...9)
 * @return the measured +5 Volt line voltage in Volt.
 */

double getModuleSupply5(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpGetDouble(session, &moduleSupply[1][slot]);
}

/**
 * @brief Returns the measured value of one of the modules temperature sensors.
 *
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @param index The temperature sensor index (0...3)
 * @note Most modules only have one temperature sensor at index 0.
 * @return
 */

double getModuleAuxTemperature(HSNMP session, int slot, int index)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        if (index < 0 || index >= MaxModuleAuxTemperatures)
                return 0.0;

        return snmpGetDouble(session, &moduleAuxiliaryMeasurementTemperature[index][slot]);
}

/**
 * @brief Returns the modules hardware voltage limit in percent.
 *
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return The modules hardware voltage limit in percent (2...102)
 */

double getModuleHardwareLimitVoltage(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpGetDouble(session, &moduleHardwareLimitVoltage[slot]);
}

/**
 * @brief Returns the modules hardware current limit in percent.
 *
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return The modules hardware current limit in percent (2...102)
 */

double getModuleHardwareLimitCurrent(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpGetDouble(session, &moduleHardwareLimitCurrent[slot]);
}

/**
 * @brief Returns the modules voltage ramp speed in percent.
 *
 * @note This function is for iseg HV modules only.
 * iseg modules have one common ramp speed for all channels.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return The modules voltage ramp speed in percent
 */

double getModuleRampSpeedVoltage(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpGetDouble(session, &moduleRampSpeedVoltage[slot]);
}

/**
 * @brief Sets the modules voltage ramp speed in percent.
 *
 * @note This function is for iseg HV modules only.
 *
 * iseg modules have one common ramp speed for all channels.
 * @param session The handle returned by snmpOpen()
 * @param slot the modules slot position in the crate (0...9)
 * @param value The new voltage ramp speed in percent
 * @note For most modules, the range is 0.001...20 percent.
 * @return The new voltage ramp speed in percent
 */

double setModuleRampSpeedVoltage(HSNMP session, int slot, double value)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpSetDouble(session, &moduleRampSpeedVoltage[slot], value);
}

/**
 * @brief Returns the modules current ramp speed in percent.
 *
 * @note This function is for iseg HV modules only.
 *
 * iseg modules have one common ramp speed for all channels.
 * This item is only valid for modules with constant current regulation.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return The modules current ramp speed in percent
 */

double getModuleRampSpeedCurrent(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpGetDouble(session, &moduleRampSpeedCurrent[slot]);
}

/**
 * @brief Sets the modules current ramp speed in percent.
 *
 * @note This function is for iseg HV modules only.
 *
 * iseg modules have one common ramp speed for all channels.
 * This item is only valid for modules with constant current regulation.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @param value The new current ramp speed in percent
 * @return The new current ramp speed in percent
 */

double setModuleRampSpeedCurrent(HSNMP session, int slot, double value)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0.0;

        return snmpSetDouble(session, &moduleRampSpeedCurrent[slot], value);
}

/**
 * @brief Returns the value of the module status register.
 *
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return The module status register
 */

int getModuleStatus(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0;

        return snmpGetInt(session, &moduleStatus[slot]);
}

/**
 * @brief Returns the value of the module event status register.
 *
 * @note This function is for iseg HV modules only.
 * @param session The handle returned by snmpOpen()
 * @param slot the modules slot position in the crate (0...9)
 * @return The module event status register
 */

int getModuleEventStatus(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0;

        return snmpGetInt(session, &moduleEventStatus[slot]);
}

/**
 * @brief Clears all modules events in a specific slot.
 *
 * To clear all events in all iseg HV modules, use setHighVoltageGroupsSwitch()
 * with the parameter clearEvents(10).
 * @param session The handle returned by snmpOpen()
 * @param slot The modules slot position in the crate (0...9)
 * @return
 */

int setModuleDoClear(HSNMP session, int slot)
{
        if (slot < 0 || slot >= MaxSlotsPerCrate)
                return 0;

        return snmpSetInt(session, &moduleDoClear[slot], 1);
}

// The rest of the functions are utility functions that actually do the SNMP calls

static void logErrors(HSNMP session, struct snmp_pdu *response,
                                                         const SnmpObject *object, int status, const char *functionName)
{
        // FAILURE: print what went wrong!
        if (status == STAT_SUCCESS)
                snmp_log(LOG_ERR, "%s(%s): Error in packet. Reason: %s\n",
                                functionName, object->desc, snmp_errstring(response->errstat));
        else
                snmp_sess_perror("snmpget", snmp_sess_session(session));
}

static int getIntegerVariable(struct variable_list *vars)
{
        if (vars->type == ASN_BIT_STR || vars->type == ASN_OCTET_STR) {
                int value = 0;
                for (size_t i = 0; i < vars->val_len && i < sizeof(int); ++i)
                        value |= (vars->val.bitstring[i] << (i * 8));
                return value;
        } if (vars->type == ASN_OPAQUE_FLOAT)
                return (int)*vars->val.floatVal;
        else if (vars->type == ASN_OPAQUE_DOUBLE)
                return (int)*vars->val.doubleVal;
        else if (vars->type == ASN_INTEGER)
                return *vars->val.integer;
        else if (vars->type == ASN_OCTET_STR)
                return *vars->val.integer;
        else if (vars->type == ASN_IPADDRESS)
                return *vars->val.integer;

        return 0;
}

static double getDoubleVariable(struct variable_list *vars)
{
        if (vars->type == ASN_OPAQUE_FLOAT)
                return *vars->val.floatVal;
        else if (vars->type == ASN_OPAQUE_DOUBLE)
                return *vars->val.doubleVal;
        else if (vars->type == ASN_INTEGER)
                return (double)*vars->val.integer;

        return 0.0;
}

static struct snmp_pdu *prepareSetRequestPdu(void)
{
        struct snmp_pdu *pdu = snmp_pdu_create(SNMP_MSG_SET);
        pdu->community = (u_char *)strdup(m_writeCommunity);
        pdu->community_len = strlen(m_writeCommunity);

        return pdu;
}

static struct snmp_pdu *prepareGetRequestPdu()
{
        struct snmp_pdu *pdu = snmp_pdu_create(SNMP_MSG_GET);

        return pdu;
}

int snmpGetInt(HSNMP session, const SnmpObject *object)
{
        int value = 0;

        struct snmp_pdu *pdu = prepareGetRequestPdu();

        snmp_add_null_var(pdu, object->id, object->len);   // generate request data

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                value = getIntegerVariable(response->variables);
        } else {
                logErrors(session, response, object, status, "snmpGetInt");
                return 0;
        }

        snmp_free_pdu(response);
        return value;
}

static int snmpSetInt(HSNMP session, const SnmpObject *object, int value)
{
        struct snmp_pdu *pdu = prepareSetRequestPdu();

        if (snmp_oid_compare(object->id, object->len, ipStaticAddress.id, ipStaticAddress.len) == 0)
                snmp_pdu_add_variable(pdu, object->id, object->len, ASN_IPADDRESS, (u_char *)&value, sizeof(value));
        else
                snmp_pdu_add_variable(pdu, object->id, object->len, ASN_INTEGER, (u_char *)&value, sizeof(value));

        int result = value;
        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                result = getIntegerVariable(response->variables);
        } else {
                logErrors(session, response, object, status, "snmpSetInt");
                return 0;
        }

        snmp_free_pdu(response);
        return result;
}

double snmpGetDouble(HSNMP session, const SnmpObject *object)
{
        double value = 0.0;

        struct snmp_pdu *pdu = prepareGetRequestPdu();

        snmp_add_null_var(pdu, object->id, object->len);   // generate request data

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                value = getDoubleVariable(response->variables);
        } else {
                logErrors(session, response, object, status, "snmpGetDouble");
                return 0;
        }

        snmp_free_pdu(response);
        return value;
}

static double snmpSetDouble(HSNMP session, const SnmpObject *object, double value)
{
        struct snmp_pdu *pdu = prepareSetRequestPdu();

        float v = (float)value;
        snmp_pdu_add_variable(pdu, object->id, object->len, ASN_OPAQUE_FLOAT, (u_char *)&v, sizeof(v));

        double result = v;

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                result = getDoubleVariable(response->variables);
        } else {
                logErrors(session, response, object, status, "snmpSetDouble");
                return 0;
        }

        snmp_free_pdu(response);
        return result;
}

static char *snmpGetString(HSNMP session, const SnmpObject *object)
{
        struct snmp_pdu *pdu = prepareGetRequestPdu();

        snmp_add_null_var(pdu, object->id, object->len);   // generate request data

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        memset(snmpStringBuffer, 0, sizeof(snmpStringBuffer));

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                struct variable_list *vars = response->variables;
                if (vars->type == ASN_OCTET_STR) {
                        size_t len = sizeof(snmpStringBuffer) - 1;
                        if (len > vars->val_len)
                                len = vars->val_len;

                        memcpy(snmpStringBuffer, vars->val.string, len);
                        snmpStringBuffer[len] = 0;
                }
        } else {
                logErrors(session, response, object, status, "snmpGetString");
                return 0;
        }

        snmp_free_pdu(response);
        return snmpStringBuffer;
}

static SnmpIntegerBuffer *snmpGetMultipleInteger(HSNMP session, const SnmpObject *objects, int size)
{
        struct snmp_pdu *pdu = prepareGetRequestPdu();

        if (size > MaxChannelsPerSlot)
                size = MaxChannelsPerSlot;

        memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));

        for (int i = 0; i < size; ++i)
                snmp_add_null_var(pdu, objects[i].id, objects[i].len);   // generate request data

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                struct variable_list *vars;
                for (vars = response->variables; vars; vars = vars->next_variable)
                        snmpIntegerBuffer.value[snmpIntegerBuffer.size++] = getIntegerVariable(vars);
        } else {
                logErrors(session, response, &objects[0], status, "snmpGetMultipleInteger");
                return &snmpIntegerBuffer;
        }

        snmp_free_pdu(response);
        return &snmpIntegerBuffer;
}

static SnmpIntegerBuffer *snmpSetMultipleInteger(HSNMP session, const SnmpObject *objects, SnmpIntegerBuffer *values)
{
        struct snmp_pdu *pdu = prepareSetRequestPdu();

        int size = values->size;
        if (size > MaxChannelsPerSlot)
                size = MaxChannelsPerSlot;

        for (int i = 0; i < size; ++i) {
                int v = values->value[i];
                snmp_pdu_add_variable(pdu, objects[i].id, objects[i].len, ASN_INTEGER, (u_char *)&v, sizeof(v));
        }

        memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                struct variable_list *vars;
                for (vars = response->variables; vars; vars = vars->next_variable)
                        snmpIntegerBuffer.value[snmpIntegerBuffer.size++] = getIntegerVariable(vars);
        } else {
                logErrors(session, response, &objects[0], status, "snmpSetMultipleInteger");
                return &snmpIntegerBuffer;
        }

        snmp_free_pdu(response);
        return &snmpIntegerBuffer;
}

static SnmpDoubleBuffer *snmpGetMultipleDouble(HSNMP session, const SnmpObject *objects, int size)
{
        struct snmp_pdu *pdu = prepareGetRequestPdu();

        if (size > MaxChannelsPerSlot)
                size = MaxChannelsPerSlot;

        memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));

        for (int i = 0; i < size; ++i)
                snmp_add_null_var(pdu, objects[i].id, objects[i].len);   // generate request data

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                struct variable_list *vars;
                for (vars = response->variables; vars; vars = vars->next_variable)
                        snmpDoubleBuffer.value[snmpDoubleBuffer.size++] = getDoubleVariable(vars);
        } else {
                logErrors(session, response, &objects[0], status, "snmpGetMultipleDouble");
                return &snmpDoubleBuffer;
        }

        snmp_free_pdu(response);

        return &snmpDoubleBuffer;
}

static SnmpDoubleBuffer *snmpSetMultipleDouble(HSNMP session, const SnmpObject *objects, SnmpDoubleBuffer *values)
{
        struct snmp_pdu *pdu = prepareSetRequestPdu();

        int size = values->size;
        if (size > MaxChannelsPerSlot)
                size = MaxChannelsPerSlot;

        for (int i = 0; i < size; ++i) {
                float v = (float)values->value[i];
                snmp_pdu_add_variable(pdu, objects[i].id, objects[i].len, ASN_OPAQUE_FLOAT, (u_char *)&v, sizeof(v));
        }

        memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));

        struct snmp_pdu *response;
        int status = snmp_sess_synch_response(session, pdu, &response);

        if (status == STAT_SUCCESS && response->errstat == SNMP_ERR_NOERROR) {
                struct variable_list *vars;
                for (vars = response->variables; vars; vars = vars->next_variable)
                        snmpDoubleBuffer.value[snmpDoubleBuffer.size++] = getDoubleVariable(vars);
        } else {
                logErrors(session, response, &objects[0], status, "snmpSetMultipleDouble");
                return &snmpDoubleBuffer;
        }

        snmp_free_pdu(response);
        return &snmpDoubleBuffer;
}

/**
 * @brief Returns an array with the outputStatus for a consecutive range of channels.
 *
 * @note This function is deprecated. Use getMultipleOutputStatuses() instead.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpIntegerBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpIntegerBuffer *getMultipleChannelStatuses(HSNMP session, int start, int size)
{
        return getMultipleOutputStatuses(session, start, size);
}

/**
 * @brief Returns an array with the outputStatus for a consecutive range of channels.
 * @since 1.1
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpIntegerBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpIntegerBuffer *getMultipleOutputStatuses(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpGetMultipleInteger(session, &outputStatus[start], size);
}

/**
 * @brief Returns an array with the outputSwitches for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpIntegerBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpIntegerBuffer *getMultipleOutputSwitches(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpGetMultipleInteger(session, &outputSwitch[start], size);
}

/**
 * @brief Sets the outputSwitch for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param values A pointer to SnmpIntegerBuffer with the list of outputSwitches.
 * @return
 */

SnmpIntegerBuffer *setMultipleOutputSwitches(HSNMP session, int start, SnmpIntegerBuffer *values)
{
        if (start < 0 || values->size < 0 || start + values->size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpSetMultipleInteger(session, &outputSwitch[start], values);
}

/**
 * @brief Returns the actual outputVoltage for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpDoubleBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpDoubleBuffer *getMultipleOutputVoltages(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpGetMultipleDouble(session, &outputVoltage[start], size);
}

/**
 * @brief Sets the demanded outputVoltage for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param values A pointer to SnmpDoubleBuffer with the list of new outputVoltages
 * @return
 */

SnmpDoubleBuffer *setMultipleOutputVoltages(HSNMP session, int start, SnmpDoubleBuffer *values)
{
        if (start < 0 || values->size < 0 || start + values->size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpSetMultipleDouble(session, &outputVoltage[start], values);
}

/**
 * @brief Returns the measured terminal voltages for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpDoubleBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpDoubleBuffer *getMultipleMeasurementTerminalVoltages(HSNMP session, int start, int size)
{
        return getMultipleOutputMeasurementTerminalVoltages(session, start, size);
}

/**
 * @brief Returns an array with the measured terminal voltages for a consecutive range of channels.
 * @since 1.1
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpDoubleBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpDoubleBuffer *getMultipleOutputMeasurementTerminalVoltages(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpGetMultipleDouble(session, &outputMeasurementTerminalVoltage[start], size);
}

/**
 * @brief getMultipleOutputConfigMaxTerminalVoltages
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return
 */

SnmpDoubleBuffer *getMultipleOutputConfigMaxTerminalVoltages(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpGetMultipleDouble(session, &outputConfigMaxTerminalVoltage[start], size);
}

/**
 * @brief Returns an array the demanded output currents for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return
 */

SnmpDoubleBuffer *getMultipleOutputCurrents(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpGetMultipleDouble(session, &outputCurrent[start], size);
}

/**
 * @brief Sets the demanded output current for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param values A pointer to SnmpDoubleBuffer with a list of new output currents
 * @return
 */

SnmpDoubleBuffer *setMultipleOutputCurrents(HSNMP session, int start, SnmpDoubleBuffer *values)
{
        if (start < 0 || values->size < 0 || start + values->size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpSetMultipleDouble(session, &outputCurrent[start], values);
}

/**
 * @brief Returns an array with the measured currents for a consecutive range of channels.
 *
 * @note This function is deprecated. Use getMultipleOutputMeasurementCurrents() instead.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpDoubleBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpDoubleBuffer *getMultipleMeasurementCurrents(HSNMP session, int start, int size)
{
        return getMultipleOutputMeasurementCurrents(session, start, size);
}

/**
 * @brief Returns an array with the measured currents for a consecutive range of channels.
 * @since 1.1
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return A pointer to SnmpDoubleBuffer with the requested information.
 * @note This pointer is only valid until the next call of getMultiple...
 * or setMultiple... function.
 */

SnmpDoubleBuffer *getMultipleOutputMeasurementCurrents(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpGetMultipleDouble(session, &outputMeasurementCurrent[start], size);
}

/**
 * @brief Returns an array with the outputConfigMaxCurrent for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return
 */

SnmpDoubleBuffer *getMultipleOutputConfigMaxCurrents(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpDoubleBuffer, 0, sizeof(snmpDoubleBuffer));
                return &snmpDoubleBuffer;
        }

        return snmpGetMultipleDouble(session, &outputConfigMaxCurrent[start], size);
}

/**
 * @brief Returns an array with the outputTripTimeMaxCurrent for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return
 */

SnmpIntegerBuffer *getMultipleOutputTripTimeMaxCurrents(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpGetMultipleInteger(session, &outputTripTimeMaxCurrent[start], size);
}

/**
 * @brief Sets the outputTripTimeMaxCurrent for a consecutive ranges of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param values
 * @return
 */

SnmpIntegerBuffer *setMultipleOutputTripTimeMaxCurrents(HSNMP session, int start, SnmpIntegerBuffer *values)
{
        if (start < 0 || values->size < 0 || start + values->size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpSetMultipleInteger(session, &outputTripTimeMaxCurrent[start], values);
}

/**
 * @brief Returns an array with the outputSupervisionBehavior for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param size The number of requested channels.
 * @return
 */

SnmpIntegerBuffer *getMultipleOutputSupervisionBehaviors(HSNMP session, int start, int size)
{
        if (start < 0 || size < 0 || start + size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpGetMultipleInteger(session, &outputSupervisionBehavior[start], size);
}

/**
 * @brief Sets the outputSupervisionBehavior for a consecutive range of channels.
 * @param session The handle returned by snmpOpen()
 * @param start The first channel (in the range of 0 to MaxArraySize).
 * 0 = slot 0, channel 0; 100 = slot 1, channel 0.
 * @param values The new outputSupervisionBehavior for the all channels starting with start.
 * @return
 */

SnmpIntegerBuffer *setMultipleOutputSupervisionBehaviors(HSNMP session, int start, SnmpIntegerBuffer *values)
{
        if (start < 0 || values->size < 0 || start + values->size > MaxChannelsPerCrate) {
                memset(&snmpIntegerBuffer, 0, sizeof(snmpIntegerBuffer));
                return &snmpIntegerBuffer;
        }

        return snmpSetMultipleInteger(session, &outputSupervisionBehavior[start], values);
}