Subversion Repositories f9daq

Rev

Rev 72 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

  1. #include "include/guide.h"
  2.  
  3. #include <iostream>
  4.  
  5. // vector output shortcut
  6. void printv(TVector3 v)
  7. {
  8.   printf("(x,y,z) = (%.4lf, %.4lf, %.4lf)\n", v.x(), v.y(), v.z());
  9. }
  10. // TVector3::Rotate does not seem accurate enough
  11. TVector3 rotatey(TVector3 v, double theta)
  12. {
  13.   return TVector3(v.x() * TMath::Cos(theta) + v.z() * TMath::Sin(theta),
  14.       v.y(),
  15.       -v.x() * TMath::Sin(theta) + v.z() * TMath::Cos(theta));
  16. }
  17. // another shortcut not found in TMath
  18. int sign(double in)
  19. {
  20.   if(in >= 0.0) return 1;
  21.   else return -1;
  22. }
  23.  
  24. void CRay::Set(TVector3 r0, TVector3 k0)
  25. {
  26.   r = r0; k = k0.Unit();
  27. }
  28. //-----------------------------------------------------------------------------
  29. //void CRay::Set(double x0, double y0, double z0, double l0, double m0, double n0)
  30. //{
  31. //r.SetXYZ(x0, y0, z0);
  32. //n.SetXYZ(l0, m0, n0); n = n.Unit();
  33. //}
  34. //-----------------------------------------------------------------------------
  35. /*
  36. CRay& CRay::operator = (const CRay& p)
  37. {
  38.         r.SetXYZ(p.GetR().x(), p.GetR().y(), p.GetR().z());
  39.         //this->r.SetXYZ(p.x(), p.y(), p.z());
  40.         n.SetXYZ(p.GetN().x(), p.GetN().y(), p.GetN().z());
  41.         return *this;
  42. } */
  43. void CRay::Print()
  44. {
  45.   printf("---> CRay::Print() <---\n");
  46.   printf("(x,y,z)=(%.2lf, %.2lf, %.2lf); (l,m,n)=(%.2lf, %.2lf, %.2lf)\n",
  47.       r.x(), r.y(), r.z(), k.x(), k.y(), k.z());
  48. }
  49. void CRay::Draw()
  50. {
  51.   double t = 50.0;
  52.   TPolyLine3D *line3d = new TPolyLine3D(2);
  53.   //line3d->SetPoint(0, r.x() - t*n.x(), r.y() - t*n.y(), r.z() - t*n.z());
  54.   line3d->SetPoint(0, r.x(), r.y(), r.z());
  55.   line3d->SetPoint(1, r.x() + t*k.x(), k.y() + t*k.y(), r.z() + t*k.z());
  56.   line3d->SetLineWidth(1);
  57.   line3d->SetLineColor(color);
  58.  
  59.   line3d->Draw();
  60. }
  61. void CRay::Draw(double x_from, double x_to)
  62. {
  63.   double A1, A2;
  64.   TPolyLine3D *line3d = new TPolyLine3D(2);
  65.  
  66.   if(k.x() < MARGIN) {
  67.       A1 = A2 = 0.0;
  68.   } else {
  69.       A1 = (x_from - r.x())/k.x();
  70.       A2 = (x_to - r.x())/k.x();
  71.   }
  72.  
  73.   line3d->SetPoint(0, x_from, A1*k.y()+r.y(), A1*k.z()+r.z());
  74.   line3d->SetPoint(1, x_to, A2*k.y()+r.y(), A2*k.z()+r.z());
  75.   line3d->SetLineWidth(1);
  76.   line3d->SetLineColor(color);
  77.  
  78.   line3d->Draw();
  79. }
  80. void CRay::DrawS(double x_from, double t)
  81. {
  82.   double A1;
  83.   TPolyLine3D *line3d = new TPolyLine3D(2);
  84.  
  85.   if(k.x() < MARGIN)
  86.     A1 = 0.0;
  87.   else
  88.     A1 = (x_from - r.x())/k.x();
  89.  
  90.   line3d->SetPoint(0, x_from, A1*k.y()+r.y(), A1*k.z()+r.z());
  91.   line3d->SetPoint(1, r.x() + t*k.x(), r.y() + t*k.y(), r.z() + t*k.z());
  92.   line3d->SetLineWidth(1);
  93.   line3d->SetLineColor(color);
  94.  
  95.   line3d->Draw();
  96. }
  97.  
  98.  
  99. CPlane4::CPlane4() :
  100.             n(TVector3(1.0, 0.0, 0.0)),
  101.             A(0),
  102.             B(0),
  103.             C(0),
  104.             D(0)
  105. { r[0] = TVector3(0.0,-1.0,-1.0);
  106. r[1] = TVector3(0.0,-1.0, 1.0);
  107. r[2] = TVector3(0.0, 1.0, 1.0);
  108. r[3] = TVector3(0.0, 1.0,-1.0);
  109. for(int i=0;i<4;i++) edge[i] = TVector3(0,0,0);
  110. for(int i=0;i<4;i++) angle_r[i] = 0;
  111. };
  112. CPlane4::CPlane4(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
  113. {
  114.   //Set(r1, r2, r3, r4);
  115.   //}
  116.   //-----------------------------------------------------------------------------
  117.   // za izracun parametrov ravnine je en vektor prevec, vendar tega
  118.   // rabim kot zadnji vogal poligona
  119.   //void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
  120.   //{
  121.   double x1,y1,z1, x2,y2,z2, x3,y3,z3;
  122.  
  123.   x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
  124.   x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
  125.   x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
  126.  
  127.   A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
  128.   B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
  129.   C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
  130.   D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
  131.  
  132.   r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
  133.   n.SetXYZ(A, B, C);
  134.   n = n.Unit();
  135.  
  136.   for(int i=0;i<4;i++)
  137.     edge[i] = r[i-3 ? i+1 : 0] - r[i];
  138.  
  139.   for(int i=0;i<4;i++)
  140.     angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
  141. };
  142.  
  143. void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
  144. {
  145.   double x1,y1,z1, x2,y2,z2, x3,y3,z3;
  146.  
  147.   x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
  148.   x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
  149.   x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
  150.  
  151.   A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
  152.   B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
  153.   C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
  154.   D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
  155.  
  156.   r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
  157.   n.SetXYZ(A, B, C);
  158.   n = n.Unit();
  159.  
  160.   for(int i=0;i<4;i++)
  161.     edge[i] = r[i-3 ? i+1 : 0] - r[i];
  162.  
  163.   for(int i=0;i<4;i++)
  164.     angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
  165. };
  166.  
  167. CPlane4::CPlane4(TVector3 *vr)
  168. {
  169.   double x1,y1,z1, x2,y2,z2, x3,y3,z3;
  170.  
  171.   x1 = vr[0].x(); y1 = vr[0].y(); z1 = vr[0].z();
  172.   x2 = vr[1].x(); y2 = vr[1].y(); z2 = vr[1].z();
  173.   x3 = vr[2].x(); y3 = vr[2].y(); z3 = vr[2].z();
  174.  
  175.   A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
  176.   B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
  177.   C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
  178.   D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
  179.  
  180.   r[0] = vr[0]; r[1] = vr[1]; r[2] = vr[2]; r[3] = vr[3];
  181.   n.SetXYZ(A, B, C);
  182.   n = n.Unit();
  183.  
  184.   for(int i=0;i<4;i++)
  185.     edge[i] = r[i-3 ? i+1 : 0] - r[i];
  186.  
  187.   for(int i=0;i<4;i++)
  188.     angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
  189. };
  190. //-----------------------------------------------------------------------------
  191. // posce presecisce !neskoncne! ravnine s premico (class CRay)
  192. // ce najde presecisce vrne 1
  193. int CPlane4::GetIntersection(TVector3 *vec, CRay ray)
  194. {
  195.   TVector3 N; //nenormirani vektor (A,B,C)
  196.   double num, den; //stevec, imenovalec
  197.   double t;
  198.   TVector3 tmp;
  199.  
  200.   N.SetXYZ(A,B,C);
  201.  
  202.   num = N*ray.GetR() + D;
  203.   den = N*ray.GetK();
  204.  
  205.   if (dbg) printf("t = %6.3lf / %6.3lf =  %6.3lf\n", num, den, num/den);
  206.  
  207.   //if(den == 0)
  208.   if(TMath::Abs(den) < MARGIN) {
  209.       //if(num == 0)
  210.       if(TMath::Abs(num) < MARGIN) {
  211.           if (dbg) printf("The ray is on the surface!\n");
  212.           return 0; //return 2; // premica lezi na ravnini
  213.       }
  214.       else {
  215.           if (dbg) printf("The ray is parallel to the surface!\n");
  216.           return 0; // ni presecisca
  217.       }
  218.   }
  219.  
  220.   t = num / den;
  221.  
  222.   tmp = ray.GetR();
  223.   tmp -= t*ray.GetK();
  224.   *vec = tmp;
  225.   return 1;
  226. }
  227. //-----------------------------------------------------------------------------
  228. // ali je vektor vec, ki lezi na ravnini skupaj z e1 in e2, med njima
  229. // angle_r je kot med e1 in e2, vsi vektorji imajo skupno izhodisce
  230. int CPlane4::IsInTri(TVector3 vec, TVector3 e1, TVector3 e2, double angle)
  231. {
  232.   double angle_ve1, angle_ve2;
  233.  
  234.   if(dbg) printf("--- CPlane4::IsInTri ---\n");
  235.  
  236.   angle_ve1 = TMath::ACos(/*TMath::Abs*/( (e1.Unit()) * (vec.Unit()) ));
  237.   angle_ve2 = TMath::ACos(/*TMath::Abs*/( (e2.Unit()) * (vec.Unit()) ));
  238.  
  239.   if(dbg)
  240.     {
  241.       printf("angle_ve1 = %lf\n", angle_ve1*DEGREE);
  242.       printf("angle_ve2 = %lf\n", angle_ve2*DEGREE);
  243.       printf("angle_sum = %lf\n", (angle_ve1 + angle_ve2)*DEGREE);
  244.       printf("  angle_r   = %lf\n", angle*DEGREE);
  245.     }
  246.  
  247.   bool difference = (MARGIN < TMath::Abs(angle - (angle_ve1 + angle_ve2)));
  248.   if (dbg) printf("  MARGIN < Difference = %d\n", difference);
  249.   return (int) !difference;
  250. }
  251. //-----------------------------------------------------------------------------
  252. // ali je vektor vec, ki lezi na ravnini!, znotraj meja, ki jih definirajo
  253. // strije vogali te ravnine r[i]
  254. int CPlane4::IsVectorIn(TVector3 vec)
  255. {
  256.   int status;
  257.  
  258.   if(dbg) printf("--- CPlane4::IsVectorIn ---\n");
  259.  
  260.   for(int i=0;i<3;i++)
  261.     {
  262.       status = IsInTri(vec - r[i], edge[i], -edge[i ? i-1 : 3], angle_r[i]);
  263.       if(dbg) printf("  [%d] vec is %s\n", i, status ? "inside" : "outside");
  264.       if(!status) return 0;
  265.     }
  266.  
  267.   return 1;
  268. }
  269. int CPlane4::TestIntersection(CRay in)
  270. {
  271.   TVector3 tmp;
  272.  
  273.   if( GetIntersection(&tmp, in) )
  274.     if( IsVectorIn(tmp) )
  275.       return 1;
  276.  
  277.   return 0;
  278. }
  279. int CPlane4::TestIntersection(TVector3 *vec, CRay in)
  280. {
  281.   TVector3 tmp;
  282.  
  283.   if( GetIntersection(&tmp, in) )
  284.     if( IsVectorIn(tmp) ) {
  285.         *vec = tmp;
  286.         return 1;
  287.     }
  288.  
  289.   return 0;
  290. }
  291. void CPlane4::Print()
  292. {
  293.   printf("--- CPlane4::Print() ---\n");
  294.   printf("  r=(%.2lf, %.2lf, %.2lf); n=(%.2lf, %.2lf, %.2lf); ",
  295.       r[0].x(), r[0].y(), r[0].z(), n.x(), n.y(), n.z());
  296.   printf(  "(A,B,C,D)=(%.2lf, %.2lf, %.2lf, %.2lf) \n", A, B, C, D);
  297.   for(int i=0;i<4;i++) printf("  edge[%d] = (%lf, %lf, %lf)\n", i, edge[i].x(), edge[i].y(), edge[i].z());
  298.   for(int i=0;i<4;i++) printf("  angle[%d] = %lf\n", i, angle_r[i]*DEGREE);
  299. }
  300. void CPlane4::Draw(int color, int width)
  301. {
  302.   TPolyLine3D *line3d = new TPolyLine3D(5);
  303.  
  304.   for(int i=0;i<4;i++) line3d->SetPoint(i, r[i].x(), r[i].y(), r[i].z());
  305.   line3d->SetPoint(4, r[0].x(), r[0].y(), r[0].z());
  306.   line3d->SetLineWidth(width); line3d->SetLineColor(color);
  307.  
  308.   line3d->Draw();
  309. }
  310.  
  311.  
  312. CSurface::CSurface(int type0):
  313.       type(type0)
  314. {
  315.   TVector3 vr[4];
  316.   TDatime now;
  317.  
  318.   vr[0].SetXYZ(0.0,-1.0,-1.0);
  319.   vr[1].SetXYZ(0.0,-1.0, 1.0);
  320.   vr[2].SetXYZ(0.0, 1.0, 1.0);
  321.   vr[3].SetXYZ(0.0, 1.0,-1.0);
  322.   //CPlane4::Set(vr);
  323.   SetIndex(1.0, 1.5);
  324.  
  325.   reflection = c_reflectivity;
  326.   rand.SetSeed(now.Get());
  327.  
  328.   SetFresnel();
  329. }
  330. CSurface::CSurface(int type0, TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4, double n10, double n20, double reflectivity)
  331. {
  332.   TDatime now;
  333.  
  334.   type = type0; CPlane4::Set(r1, r2, r3, r4);
  335.   SetIndex(n10, n20);
  336.  
  337.   reflection = reflectivity;
  338.   rand.SetSeed(now.Get());
  339.  
  340.   SetFresnel();
  341. }
  342. CSurface::CSurface(int type0, TVector3 *vr, double n10, double n20, double reflectivity)
  343. {
  344.   TDatime now;
  345.  
  346.   type = type0; CPlane4::Set(vr);
  347.   SetIndex(n10, n20);
  348.  
  349.   reflection = reflectivity;
  350.   rand.SetSeed(now.Get());
  351.  
  352.   SetFresnel();
  353. }
  354. void CSurface::SetIndex(double n10, double n20)
  355. {
  356.   n1 = n10; n2 = n20; n1_n2 = n1/n2;
  357.  
  358.   if(n1 > n2)
  359.     cosTtotal = TMath::Sqrt( 1 - TMath::Power(n2/n1, 2) );
  360.   else
  361.     cosTtotal = 0.0;
  362. }
  363. //-----------------------------------------------------------------------------
  364. // sprejme zarek, vrne uklonjen/odbit zarek in presecisce
  365. // vrne 0 ce ni presecisca; 1 ce se je lomil
  366. // 2 ce se je odbil; -2 ce se je absorbiral
  367. int CSurface::PropagateRay(CRay in, CRay *out, TVector3 *intersection)
  368. {
  369.   if (dbg) printf("--- CSurface::PropagateRay ---\n");
  370.   double cosTi; // incident ray angle
  371.   double cosTt; // transmited ray angle
  372.   TVector3 intersect, transmit;
  373.  
  374.   if( !(GetIntersection(&intersect, in) == 1) )
  375.     return 0;
  376.  
  377.   *intersection = intersect;
  378.   if( !IsVectorIn(intersect) )
  379.     return 0;
  380.  
  381.   // --------------- Fresnel ----------------------------------------------------
  382.   // R_f = a_te * R_te  +  a_tm * R_tm
  383.   // e - electrical/perependicular
  384.   // m - magnetic polarization/parallel
  385.   double r_te=0;
  386.   double r_tm=0;
  387.   double R_te=0; // s reflection coefficient
  388.   double R_tm=0; // p reflection coefficient
  389.   double R_f = 0.0;
  390.   double a_te = 0.0; // s-wave amplitude, cos Alpha
  391.   double a_tm = 0.0; // p-wave amplitude, sin Alpha
  392.   TVector3 v_te; // unit s-polarization vector
  393.   TVector3 v_tm; // unit p-polarization vector
  394.   TVector3 v_tm_t;// transmited polarization parallel with the plane of incidence
  395.   TVector3 pol_t = in.GetP(); // incident polarization
  396.   int sign_n; // sign of normal direction vs. inbound ray
  397.   double cosTN; // debug
  398.  
  399.   // Decomposition of incident polarization vector
  400.   // using unit vectors v_tm & v_te
  401.   // in a_tm and a_te components
  402.   //if(fresnel) {
  403.       // s-polarization unit vector v_te
  404.       // is in the plane orthogonal to the plane of incidence
  405.       // defined as the plane spanned by
  406.       // incident surface vector n and wave vector k
  407.       // k in this notation is in.GetK()
  408.       v_te = n.Cross(in.GetK());
  409.       v_te = v_te.Unit();
  410.       v_tm = -v_te.Cross(in.GetK());
  411.       v_tm = v_tm.Unit();
  412.       if(dbg) {
  413.           printf("  v_te = "); printv(v_te);
  414.           printf("  v_tm = "); printv(v_tm);
  415.       }
  416.  
  417.       double cosAf = v_te * in.GetP();
  418.       double alpha = acos(cosAf);
  419.       if(dbg) printf("  cosAf = %lf (Af = %lf)\n", cosAf, alpha*DEGREE);
  420.  
  421.       a_te = cosAf;
  422.       a_tm = TMath::Sqrt(1 - cosAf*cosAf);
  423.       if(dbg) printf("  a_te = %lf, a_tm = %lf\n", a_te, a_tm);
  424.   //}
  425.   // ----------------------------------------------------------------------------
  426.  
  427.   // reflection probability
  428.   double p_ref = rand.Uniform(0.0, 1.0);
  429.  
  430.   if(type == SURF_TOTAL) type = SURF_REFRA;
  431.   switch(type){
  432.   // ----------------------------------------------------------------------------
  433.   // --------------- refraction from n1 to n2 -----------------------------------
  434.   // ----------------------------------------------------------------------------
  435.   case SURF_REFRA:
  436.     cosTi = in.GetK() * n;
  437.     if(dbg) printf("  cosTi = %lf (Ti = %lf)\n", cosTi, TMath::ACos(cosTi)*DEGREE);
  438.     sign_n = -sign(cosTi);
  439.     if(dbg) printf("  sign_n = %d\n", sign_n);
  440.     cosTi = TMath::Abs(cosTi);
  441.  
  442.     // Check if there can be total reflection: n1 > n2
  443.     if(N1_N2(-sign_n) < 1.0)
  444.       cosTtotal = TMath::Sqrt( 1 - TMath::Power(N1_N2(-sign_n), 2) );
  445.     else
  446.       cosTtotal = 0.0;
  447.  
  448.     if(dbg) printf("  cosTtotal = %lf (Ttotal = %lf)\n", cosTtotal, TMath::ACos(cosTtotal)*DEGREE);
  449.     // reflection dependance on polarization missing
  450.     // reflection hardcoded to 0.96
  451.     if (dbg) printf("   reflection probability = %f\n", p_ref);
  452.  
  453.     // If n1>n2 and theta>thetaCritical, total reflection
  454.     if(cosTi < cosTtotal) {
  455.         if(dbg) printf("  TOTAL\n");
  456.         transmit = in.GetK() + sign_n*2*cosTi*n;
  457.  
  458.         if(dbg) {
  459.             cosTN = TMath::Abs(transmit.Unit() * n);
  460.             printf("  cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
  461.         }
  462.         out->Set(intersect, transmit);
  463.  
  464.         // Shift implemented, but only linear polarization is implemented
  465.         if (dbg) printf("CSurface: Propagate TOTAL\n");
  466.         v_tm_t = -v_te.Cross(transmit);
  467.         v_tm_t = v_tm_t.Unit();
  468.         // shift the p and s components
  469.         double n12 = N1_N2(-sign_n);
  470.         double deltaP = 2 * atan(sqrt(1 - cosTi*cosTi - pow(n12,2))/(pow(n12,2)*cosTi));
  471.         double deltaS = 2 * atan(sqrt(1 - cosTi*cosTi - pow(n12,2))/cosTi);
  472.         double delta = deltaP - deltaS;
  473.         alpha += delta;
  474.         a_tm = sin(alpha);
  475.         a_te = cos(alpha);
  476.         if (dbg) printf("  deltaP = %f deltaS = %f; new a_tm = %f, a_te = %f",
  477.             deltaP, deltaS, a_tm, a_te);
  478.         pol_t = a_tm*v_tm_t + a_te*v_te;
  479.         if (dbg) printv(pol_t);
  480.         out->setPolarization(pol_t);
  481.  
  482.         return REFLECTION;
  483.     } else {
  484.         // reflection or refraction according to Fresnel equations
  485.         if(dbg) printf("  REFRACTION\n");
  486.         if(dbg) printf("  N1_N2(sign_n) = %lf\n", N1_N2(sign_n));
  487.         cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
  488.         if(dbg) printf("  cosTt = %lf (Tt = %lf) \n", cosTt, TMath::ACos(cosTt)*DEGREE);
  489.  
  490.         transmit = N1_N2(sign_n)*in.GetK() + sign_n*(N1_N2(sign_n)*cosTi - cosTt)*n;
  491.         if(dbg) {printf("  transmit.Unit() = "); printv(transmit.Unit());}
  492.         if(dbg) {
  493.             cosTN = transmit.Unit() * n;
  494.             printf("  cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
  495.         }
  496.  
  497.         //if(cosTi<=cosTtotal) cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
  498.         //if(fresnel) {
  499.         r_te = (n1*cosTi - n2*cosTt)/(n1*cosTi + n2*cosTt); // transverse
  500.         r_tm = (n2*cosTi - n1*cosTt)/(n1*cosTt + n2*cosTi); // paralel
  501.  
  502.         if(dbg) printf("  r_te = %lf, r_tm = %lf\n", r_te, r_tm);
  503.  
  504.         // transmited polarization
  505.         v_tm_t = -v_te.Cross(transmit);
  506.         v_tm_t = v_tm_t.Unit();
  507.         pol_t = a_te*(1.0 - TMath::Abs(r_te))*v_te + a_tm*(1.0 - TMath::Abs(r_tm))*v_tm_t;
  508.  
  509.         if(dbg) {
  510.             printf("  v_tm_t = "); printv(v_tm_t);
  511.             printf("  pol_t = "); printv(pol_t);
  512.         }
  513.  
  514.         // Fresnel coefficients
  515.         R_te = TMath::Power(r_te, 2);
  516.         R_tm = TMath::Power(r_tm, 2);
  517.         R_f = a_te*a_te*R_te + a_tm*a_tm*R_tm;
  518.  
  519.         if (dbg) printf("  R_te = %lf, R_tm = %lf, R_f = %lf\n", R_te, R_tm, R_f);
  520.     }
  521.  
  522.     if(p_ref >= R_f) { // se lomi
  523.         if (dbg) printf("   SURFACE REFRACTED. Return.\n");
  524.         out->Set(intersect, transmit);
  525.         out->setPolarization(pol_t);
  526.         return REFRACTION;
  527.     } else { // se odbije
  528.         if (dbg) printf("   SURFACE REFLECTED. p_ref=%f, R_f=%f\n", p_ref, R_f);
  529.         transmit = in.GetK() + sign_n*2*cosTi*n;
  530.         TVector3 v_tm_r = -v_te.Cross(transmit);
  531.         v_tm_r = v_tm_r.Unit();
  532.         out->Set(intersect, transmit);
  533.         //pol_t = -in.GetP() + sign_n*2*cosTi*n;
  534.         pol_t = a_te*(1.0 - TMath::Abs(r_te))*v_te + a_tm*(1.0 - TMath::Abs(r_tm))*v_tm_r;
  535.         out->setPolarization(pol_t);
  536.         return REFLECTION;
  537.     }
  538.  
  539.     //}
  540.     break;
  541.  
  542.     // ----------------------------------------------------------------------------
  543.     // --------------- reflection at "reflection" probability ---------------------
  544.     // ----------------------------------------------------------------------------
  545.   case SURF_REFLE:
  546.     p_ref = rand.Uniform(0.0, 1.0);
  547.     if(p_ref < reflection) { // se odbije
  548.         cosTi = in.GetK() * n;
  549.         transmit = in.GetK() - 2*cosTi*n;
  550.         out->Set(intersect, transmit);
  551.         return REFLECTION; //sdhfvjhsdbfjhsdbcvjhsb
  552.     } else { // se ne odbije
  553.         transmit = in.GetK();
  554.         out->Set(intersect, transmit);
  555.         return ABSORBED;
  556.     }
  557.     break;
  558.  
  559.     // total reflection from n1 to n2 with R probbability
  560.   case SURF_IMPER:
  561.     p_ref = rand.Uniform(0.0, 1.0);
  562.     if(p_ref < reflection) { // se odbije
  563.         cosTi = in.GetK() * n;
  564.         if(TMath::Abs(cosTi) < cosTtotal) { // totalni odboj
  565.             transmit = in.GetK() - 2*cosTi*n;
  566.             out->Set(intersect, transmit);
  567.         } else { // ni tot. odboja
  568.             transmit = in.GetK();
  569.             out->Set(intersect, transmit);
  570.             return ABSORBED;
  571.         }
  572.     } else { // se ne odbije
  573.         transmit = in.GetK();
  574.         out->Set(intersect, transmit);
  575.         return ABSORBED;
  576.     }
  577.     break;
  578.  
  579.   default:
  580.     *out = in;
  581.     break;
  582.   }
  583.  
  584.   return REFRACTION;
  585. }
  586.  
  587. Guide::Guide(TVector3 center0, DetectorParameters &parameters) :
  588.     _d(parameters.getD()),
  589.     _n1(parameters.getN1()),
  590.     _n2(parameters.getN2()),
  591.     _n3(parameters.getN3()),
  592.     _r(c_reflectivity),
  593.     _absorption(0),
  594.     _A(0),
  595.     _badCoupling(parameters.badCoupling())
  596. {
  597.   double t;
  598.   TDatime now;
  599.   rand.SetSeed(now.Get());
  600.   center = center0;
  601.   double b = parameters.getB();
  602.   double a = parameters.getA();
  603.   // if PlateOn, then n0 = n3 (optical grease), else = n1 (air)
  604.   //double n0 = (parameters.getPlateOn() ? parameters.getN3(): n1);
  605.   double n0 = (parameters.getPlateOn() ? _n2 : _n1);
  606.   int fresnel = parameters.getFresnel();
  607.  
  608.   // light guide edges
  609.   t = b/2.0;
  610.   vodnik_edge[0].SetXYZ(0.0, t,-t);
  611.   vodnik_edge[1].SetXYZ(0.0, t, t);
  612.   vodnik_edge[2].SetXYZ(0.0,-t, t);
  613.   vodnik_edge[3].SetXYZ(0.0,-t,-t);
  614.   t = a/2.0;
  615.   vodnik_edge[4].SetXYZ(_d, t,-t);
  616.   vodnik_edge[5].SetXYZ(_d, t, t);
  617.   vodnik_edge[6].SetXYZ(_d,-t, t);
  618.   vodnik_edge[7].SetXYZ(_d,-t,-t);
  619.  
  620.   for(int i = 0; i<8; i++) vodnik_edge[i] += center;
  621.  
  622.   // light guide surfaces
  623.   s_side[0] = new CSurface(SURF_REFRA, vodnik_edge, n0, _n2, _r);
  624.   s_side[0]->FlipN();
  625.  
  626.   s_side[1] = new CSurface(SURF_REFRA, vodnik_edge[3], vodnik_edge[2],
  627.       vodnik_edge[6], vodnik_edge[7], _n2, _n1, _r);
  628.   s_side[2] = new CSurface(SURF_REFRA, vodnik_edge[2], vodnik_edge[1],
  629.       vodnik_edge[5], vodnik_edge[6], _n2, _n1, _r);
  630.   s_side[3] = new CSurface(SURF_REFRA, vodnik_edge[1], vodnik_edge[0],
  631.       vodnik_edge[4], vodnik_edge[5], _n2, _n1, _r);
  632.   s_side[4] = new CSurface(SURF_REFRA, vodnik_edge[0], vodnik_edge[3],
  633.       vodnik_edge[7], vodnik_edge[4], _n2, _n1, _r);
  634.   // n3 - ref ind at the exit, grease, air
  635.   s_side[5] = new CSurface(SURF_REFRA, &vodnik_edge[4], _n2, _n3, _r);
  636.   s_side[5]->FlipN();
  637.   // exit surface in the case of bad coupling
  638.   noCoupling = new CSurface(SURF_REFRA, &vodnik_edge[4], _n2, 1.0, _r);
  639.   noCoupling->FlipN();
  640.   // grease = specific pattern area of coupling
  641.   TVector3 activePosition(center);
  642.   activePosition += TVector3(_d, 0, 0);
  643.   TVector3 normal(1,0,0);
  644.   grease = new CPlaneR(activePosition, normal, 0.95*a/2.0);
  645.  
  646.   if(fresnel) for(int i=0; i<6; i++) s_side[i]->SetFresnel(1);
  647.  
  648.   // statistics histograms
  649.   hfate = (TH1F*)gROOT->FindObject("hfate"); if(hfate) delete hfate;
  650.   hfate = new TH1F("hfate", "Ray fate", 8, -3.5, 4.5);
  651.   (hfate->GetXaxis())->SetBinLabel(1, "Back Ref");
  652.   (hfate->GetXaxis())->SetBinLabel(2, "No Ref");
  653.   (hfate->GetXaxis())->SetBinLabel(3, "Refrac");
  654.   (hfate->GetXaxis())->SetBinLabel(4, "LG Miss");
  655.   (hfate->GetXaxis())->SetBinLabel(5, "Exit");
  656.   (hfate->GetXaxis())->SetBinLabel(6, "Enter");
  657.   (hfate->GetXaxis())->SetBinLabel(7, "Rays");
  658.   (hfate->GetXaxis())->SetBinLabel(8, "Absorb");
  659.  
  660.   hnodb_all = (TH1F*)gROOT->FindObject("hnodb_all"); if(hnodb_all) delete hnodb_all;
  661.   hnodb_all = new TH1F("hnodb_all", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
  662.  
  663.   hnodb_exit = (TH1F*)gROOT->FindObject("hnodb_exit"); if(hnodb_exit) delete hnodb_exit;
  664.   hnodb_exit = new TH1F("hnodb_exit", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
  665.  
  666.   int nBins = nch + 1;
  667.   hin = (TH2F*)gROOT->FindObject("hin"); if(hin) delete hin;
  668.   hin = new TH2F("hin", ";x [mm]; y[mm]", nBins, -b/2.0, +b/2.0, nBins, -b/2.0, +b/2.0);
  669.  
  670.   hout = (TH2F*)gROOT->FindObject("hout"); if(hout) delete hout;
  671.   hout = new TH2F("hout", ";x [mm];y [mm]", nBins, -a/2.0, +a/2.0, nBins, -a/2.0, +a/2.0);
  672. }
  673. //-----------------------------------------------------------------------------
  674. // Sledi zarku skozi vodnik. Vrne:                                            
  675. //  0, ce zgresi vstopno ploskev                                              
  676. //  1, ce zadane izstopno ploskev                                              
  677. // -1, ce se v vodniku ne odbije totalno
  678. //  2, enter the light guide, bin 2 of hfate = refraction                                    
  679. // -2, ce se ne odbije zaradi koncnega R stranic                              
  680. // -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev              
  681. // +4, ce se absorbira v materialu                                            
  682. Fate Guide::PropagateRay(CRay in, CRay *out, int *n_points, TVector3 *points)
  683. {
  684.   if (dbg) printf("--- GUIDE::PropagateRay ---\n");
  685.   // ray0 - incident ray
  686.   // ray1 - trans/refl ray
  687.   CRay ray0;
  688.   CRay ray1;
  689.   TVector3 vec0, vec1;
  690.   int inters_i = 0;
  691.  
  692.   ray0 = in;
  693.   int n_odb = 0;
  694.   int last_hit = 0;
  695.   int propagation = 0;
  696.   int result = s_side[0]->PropagateRay(ray0, &ray1, &vec1);
  697.   if( !(result) ) {
  698.       // ce -NI- presecisca z vstopno
  699.       if (dbg) printf("  GUIDE: missed the light guide\n");
  700.       fate = missed;
  701.       //hfate->Fill(0);
  702.   } else if(result == REFLECTION) {
  703.       if (dbg) printf(" REFLECTED on the entry surface!\n");
  704.       fate = backreflected;
  705.       //hfate->Fill(-3);
  706.   } else {
  707.       if (dbg) printf("  GUIDE: ray entered\n");
  708.       points[0] = ray1.GetR();
  709.       hfate->Fill(enter); // enter
  710.       hin->Fill(vec1.y(), vec1.z());
  711.       if (dbg) printf("  GUIDE: n_odb = %d\n", n_odb);
  712.  
  713.       while (n_odb++ < MAX_REFLECTIONS) {
  714.           if (dbg) printf("  GUIDE: Boundary test: %d\n",n_odb);
  715.           ray0 = ray1;
  716.           vec0 = vec1;
  717.           propagation = 11;
  718.           for(inters_i=0; inters_i<6; inters_i++) {
  719.               if (dbg) printf("  GUIDE: Test intersection with surface %d \n", inters_i);
  720.               if( inters_i != last_hit) {
  721.                   int testBoundary = s_side[inters_i]->TestIntersection(&vec1, ray1);
  722.                   if( testBoundary ) {
  723.                       if (dbg) printf("  GUIDE: ray intersects with LG surface %d\n",inters_i);
  724.                       break;
  725.                   }
  726.               }
  727.           }
  728.           points[n_odb] = vec1;
  729.           if(inters_i == 0) {
  730.               fate = backreflected;
  731.               //hfate->Fill(backreflected);
  732.               break;
  733.           } // backreflection
  734.  
  735.           // the passage is possible, test propagation
  736.           propagation = s_side[inters_i]->PropagateRay(ray0, &ray1, &vec1);
  737.  
  738.           if (dbg) printf("  GUIDE: surface = %d, propagation = %d\n", inters_i, propagation);
  739.  
  740.  
  741.           if(propagation == ABSORBED) {
  742.               fate = noreflection;
  743.               break;
  744.           } //refraction due to finite reflectivity
  745.  
  746.           if(inters_i == 5) {
  747.               if (_badCoupling) {
  748.                   TVector3 hitVector(0,0,0);
  749.                   bool hitActive = grease->TestIntersection(&hitVector, ray0);
  750.                   if (hitActive and dbg) printf("   GUIDE: hit grease\n");
  751.                   if (!hitActive) propagation = noCoupling->PropagateRay(ray0, &ray1, &vec1);
  752.               }
  753.               // check on which side the vector is?
  754.               TVector3 ray = ray1.GetK();
  755.               TVector3 exitNormal = s_side[5]->GetN();
  756.               if (dbg) printf("ray*n_5 = %lf\n", ray*exitNormal);
  757.               if (ray*exitNormal > 0) {
  758.                   if (dbg) printf("  GUIDE: ray is backreflected from exit window.\n");
  759.                   fate = backreflected;
  760.                   n_odb++;
  761.                   points[n_odb] = vec1;
  762.                   ray0 = ray1;
  763.                   break;
  764.               }
  765.               fate =  hitExit;
  766.               hout->Fill(vec1.y(), vec1.z());
  767.               hnodb_exit->Fill(n_odb-1);
  768.               n_odb++;
  769.               points[n_odb] = vec1;
  770.               ray0 = ray1;
  771.               break;
  772.           }
  773.  
  774.           if(propagation == REFRACTION) {
  775.               fate = refracted;
  776.               n_odb++;
  777.               points[n_odb] = vec1;
  778.               ray0 = ray1;
  779.               break;
  780.           } // no total reflection when should be
  781.  
  782.           last_hit = inters_i;
  783.       }
  784.   }
  785.  
  786.   //--- material absorption ---
  787.   if(_absorption) {
  788.       double travel = 0.0;
  789.       if (dbg) printf("n_odb = %d\n", n_odb);
  790.       for(int point = 0; point < n_odb-1; point++) {
  791.           travel += (points[point] - points[point+1]).Mag();
  792.           if (dbg) printf("travel = %lf\n", travel);
  793.       }
  794.       double T_abs = TMath::Exp(-travel/_A);
  795.       if(dbg)printf("T_abs = %lf\n", T_abs);
  796.       double p_abs = rand.Uniform(0.0, 1.0);
  797.       if(dbg)printf("p_abs = %lf\n", p_abs);
  798.  
  799.       if(p_abs > T_abs) fate = absorbed; // absorption
  800.   }
  801.   //--- material absorption ---
  802.  
  803.   hfate->Fill(fate);
  804.   hfate->Fill(rays);
  805.   hnodb_all->Fill(n_odb-2);
  806.   *n_points = n_odb+1;
  807.   *out = ray0;
  808.   return fate;
  809. }
  810. void Guide::GetVFate(int *out)
  811. {
  812.   for(int i=0;i<7;i++) out[i] = (int)hfate->GetBinContent(i+1);
  813. }
  814. void Guide::Draw(int color, int width)
  815. {
  816.   for(int i = 0; i<6; i++) s_side[i]->Draw(color, width);
  817. }
  818. void Guide::DrawSkel(int color, int width)
  819. {
  820.   TPolyLine3D *line3d = new TPolyLine3D(2);
  821.   line3d->SetLineWidth(width); line3d->SetLineColor(color);
  822.  
  823.   for(int i=0; i<4; i++) {
  824.       line3d->SetPoint(0, vodnik_edge[i+0].x(), vodnik_edge[i+0].y(), vodnik_edge[i+0].z());
  825.       line3d->SetPoint(1, vodnik_edge[i+4].x(), vodnik_edge[i+4].y(), vodnik_edge[i+4].z());
  826.       line3d->DrawClone();
  827.   }
  828. }
  829.  
  830.  
  831. int CPlaneR::TestIntersection(TVector3 *vec, CRay ray)
  832. {
  833.   double num, den; //stevec, imenovalec
  834.   double t;
  835.   TVector3 tmp;
  836.  
  837.   if(dbg) printf("---> CPlaneR::TestIntersection <---\n");
  838.   if(dbg) {printf("c = "); printv(center); printf(" | n = "); printv(n); printf("\n");}
  839.  
  840.   double D = - n*center;
  841.   num = n*ray.GetR() + D;
  842.   den = n*ray.GetK();
  843.  
  844.   if(dbg) printf("D = %.4lf | num = %.4lf | den = %.4lf\n", D, num, den);
  845.  
  846.   if(TMath::Abs(den) < MARGIN) {
  847.       if(TMath::Abs(num) < MARGIN)
  848.         return 0;
  849.       else
  850.         return 0;
  851.   }
  852.  
  853.   t = num / den;
  854.  
  855.   if(dbg) printf("t = %.4lf | ", t);
  856.  
  857.   tmp = ray.GetR();
  858.   tmp -= t*ray.GetK();
  859.   *vec = tmp;
  860.  
  861.   if(dbg) {printv(tmp); printf(" | Rv = %.4lf <> R = %.4lf\n", ((tmp - center).Mag()), _r);}
  862.  
  863.  
  864.   if( ((tmp - center).Mag()) < _r )
  865.     return 1;
  866.   else
  867.     return 0;
  868. }
  869.  
  870. void CPlaneR::Draw(int color, int width)
  871. {
  872.   const int NN = 32;
  873.   double phi, x, y;
  874.  
  875.   TPolyLine3D *arc;
  876.   arc = new TPolyLine3D(NN+1);
  877.   arc->SetLineWidth(width);
  878.   arc->SetLineColor(color);
  879.  
  880.   for(int i=0; i<=NN; i++) {
  881.       phi = i*2.0*TMath::Pi()/NN;
  882.       x = _r*TMath::Cos(phi);
  883.       y = _r*TMath::Sin(phi);
  884.       arc->SetPoint(i, center.x(),  x,  y);
  885.   }
  886.   arc->Draw();
  887. }
  888.  
  889.  
  890. CDetector::CDetector(TVector3 center0, DetectorParameters& parameters) :
  891.       center(center0),
  892.       glass_on(parameters.getGlassOn()),
  893.       glass_d(parameters.getGlassD()),
  894.       col_in(2),
  895.       col_lg(8),
  896.       col_out(4),
  897.       col_rgla(6),
  898.       col_LG(1),
  899.       col_glass(4),
  900.       col_active(7),
  901.       guide_on(parameters.getGuideOn()),
  902.       guide(new Guide(center0, parameters)),
  903.       plate(new Plate(parameters)),
  904.       _plateWidth(parameters.getPlateWidth()),
  905.       _plateOn(parameters.getPlateOn()),
  906.       offsetY(parameters.getOffsetY()),
  907.       offsetZ(parameters.getOffsetZ())
  908. {
  909.   //  };
  910.  
  911.   //-----------------------------------------------------------------------------
  912.   //void CDetector::Init()
  913.   //{
  914.   double d = parameters.getD();
  915.   double x_offset;
  916.   if(guide_on) x_offset = center.x();
  917.   else x_offset = center.x() - d;
  918.  
  919.   double b = parameters.getB();
  920.   //double n1 = parameters.getN1();
  921.   //double n2 = parameters.getN2();
  922.   double n3 = parameters.getN3();
  923.   double reflectivity = c_reflectivity;
  924.   double x_gap = parameters.getGap().X();
  925.   double y_gap = parameters.getGap().Y();
  926.   double z_gap = parameters.getGap().Z();
  927.  
  928.   // additional glass between at top of SiPM
  929.   // example: epoxy n=1.60
  930.   double n4 = 1.57;
  931.   TVector3 plane_v[4];
  932.   int nBins = nch + 1;
  933.   double p_size = b/2.0;
  934.   plane_v[0].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap - p_size);
  935.   plane_v[1].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap + p_size);
  936.   plane_v[2].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap + p_size);
  937.   plane_v[3].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap - p_size);
  938.   glass = new CSurface(SURF_REFRA, plane_v, n3, n4, reflectivity);
  939.   glass->FlipN();
  940.  
  941.   // additional circular glass between LG and SiPM
  942.   glass_circle = new CPlaneR(TVector3(x_offset+d+glass_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), b);
  943.  
  944.   hglass = (TH2F*)gROOT->FindObject("hglass"); if(hglass) delete hglass;
  945.   hglass = new TH2F("hglass", "",
  946.       nBins, y_gap - p_size, y_gap + p_size,
  947.       nBins, z_gap - p_size, z_gap + p_size);
  948.  
  949.   // SiPM active surface
  950.   p_size = parameters.getActive()/2.0;
  951.   if (dbg) cout<<"SiPM active length "<<parameters.getActive()<<endl;
  952.  
  953.   plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
  954.   plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
  955.   plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
  956.   plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
  957.   active = new CPlane4(plane_v);
  958.   //active surface in case of bad coupling is circle d=a
  959.   TVector3 activePosition(center);
  960.   activePosition += TVector3(d + x_gap, 0, 0);
  961.   TVector3 normal(1,0,0);
  962.   grease = new CPlaneR(activePosition, normal, 1.0*p_size);
  963.  
  964.   hactive = (TH2F*)gROOT->FindObject("hactive"); if(hactive) delete hactive;
  965.   //hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
  966.   hactive = new TH2F("hactive", ";x [mm];y [mm]", nBins, y_gap - p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
  967.  
  968.   p_size = b/2.0;
  969.   //p_size = 2.5;
  970.   //p_size = M*0.6;
  971.   hlaser = (TH2F*)gROOT->FindObject("hlaser"); if(hlaser) delete hlaser;
  972.   hlaser = new TH2F("hlaser", ";x [mm]; y [mm]", nBins, -p_size+offsetY, p_size+offsetY, nBins, -p_size+offsetZ, p_size+offsetZ);
  973.  
  974.   // collection surface in SiPM plane
  975.   p_size = 1.4*b/2.0;
  976.   plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
  977.   plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
  978.   plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
  979.   plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
  980.   detector = new CPlane4(plane_v);
  981.  
  982.   hdetector = (TH2F*)gROOT->FindObject("hdetector"); if(hdetector) delete hdetector;
  983.   //hdetector = new TH2F("hdetector", "Hits detector plane", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
  984.   hdetector = new TH2F("hdetector", ";x [mm]; y [mm]", nBins, y_gap-p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
  985.  
  986.   /*
  987.         window_circle = new CPlaneR(TVector3(x_offset+d+window_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), window_R);  
  988.  
  989.         p_size = M*a;
  990.         plane_v[0].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap - p_size);
  991.         plane_v[1].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap + p_size);
  992.         plane_v[2].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap + p_size);
  993.         plane_v[3].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap - p_size);
  994.         window = new CSurface(SURF_REFRA, plane_v, n1, n2, reflectivity); window->FlipN();
  995.  
  996.         hwindow = (TH2F*)gROOT->FindObject("hwindow"); if(hwindow) delete hwindow;
  997.         hwindow = new TH2F("hwindow", "Hits Window", nch, y_gap - window_R, y_gap + window_R, nch, z_gap - window_R, z_gap + window_R);
  998.    */
  999.   p_size = b/2.0;
  1000.   histoPlate = (TH2F*)gROOT->FindObject("histoPlate"); if(histoPlate) delete histoPlate;
  1001.   histoPlate = new TH2F("histoPlate", "Hits on glass plate", nBins, -p_size, +p_size, nBins, -p_size, +p_size);
  1002. }
  1003.  
  1004. //-----------------------------------------------------------------------------
  1005. // vrne 1 ce je zadel aktvino povrsino
  1006. // vrne <1 ce jo zgresi
  1007. int CDetector::Propagate(CRay in, CRay *out, int draw)
  1008. // Sledi zarku skozi vodnik. Vrne:                                            
  1009. //  0, ce zgresi vstopno ploskev MISSED                                              
  1010. //  1, ce zadane izstopno ploskev HIT                                            
  1011. // -1, ce se v vodniku ne odbije totalno REFRACTED
  1012. //  2, enter the light guide, bin 2 of hfate EXIT                                    
  1013. // -2, ce se ne odbije zaradi koncnega R stranic - no total reflection REFRACTED                            
  1014. // -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev BACK_REFLECTED            
  1015. // +4, ce se absorbira v materialu ABSORBED
  1016. {
  1017.   if (dbg) printf("--- Detector::Propagate ---\n");
  1018.   //CRay *ray0 = new CRay; ray0->Set(in.GetR(), in.GetN()); ray0->SetColor(col_in);
  1019.   CRay *rayin = new CRay(in);
  1020.   rayin->SetColor(col_in);
  1021.   CRay *rayout = new CRay(in);
  1022.   rayout->SetColor(col_in);
  1023.  
  1024.   const int max_n_points = guide->GetMAXODB() + 2;
  1025.   TVector3 pointsPlate[max_n_points];
  1026.   //TVector3 intersection;
  1027.   Fate fatePlate;
  1028.   int nPointsPlate;
  1029.   TPolyLine3D *line3d = new TPolyLine3D(2);
  1030.   line3d->SetLineWidth(1);
  1031.   line3d->SetLineColor(4);
  1032.  
  1033.   // Draw the plate and propagate the ray through
  1034.   // check if the ray should be reflected??
  1035.  
  1036.   if(_plateOn) {
  1037.  
  1038.       fatePlate = plate->propagateRay(*rayin, rayout, &nPointsPlate, pointsPlate);
  1039.       if(draw) rayin->DrawS(center.x()- _plateWidth, -10.0);
  1040.       if(draw) {
  1041.           if(fatePlate == missed) {
  1042.               rayout->SetColor(col_in);
  1043.               rayout->DrawS(center.x() - _plateWidth, -10.0);
  1044.           }
  1045.           else if(fatePlate == backreflected){
  1046.               rayout->SetColor(kBlack);
  1047.               rayout->DrawS(center.x() - _plateWidth, 7.0);
  1048.               if (dbg) printf("Backreflected at plate!\n");
  1049.           }
  1050.           else {
  1051.               int p_i;
  1052.               for(p_i = 0; p_i < nPointsPlate-1; p_i++) {
  1053.                   line3d->SetPoint(0, pointsPlate[p_i].x(), pointsPlate[p_i].y(), pointsPlate[p_i].z());
  1054.                   line3d->SetPoint(1, pointsPlate[p_i+1].x(), pointsPlate[p_i+1].y(), pointsPlate[p_i+1].z());
  1055.                   line3d->DrawClone();
  1056.               }
  1057.               rayout->DrawS(pointsPlate[p_i].x(), -0.1);
  1058.               if(fatePlate == noreflection) { // lost on plate side
  1059.                   rayout->SetColor(col_out);
  1060.                   rayout->DrawS(pointsPlate[p_i].x(), 10.0);
  1061.               }
  1062.           }
  1063.       }
  1064.  
  1065.       if(! (fatePlate == hitExit or fatePlate == refracted) ) {
  1066.           guide->GetHFate()->Fill(rays);
  1067.           if (dbg)printf("CDetector::propagate Simulated ray missed the entry surface!\n");
  1068.           if (fatePlate == backreflected)
  1069.             guide->GetHFate()->Fill(fatePlate); // reflected back
  1070.           else
  1071.             guide->GetHFate()->Fill(noreflection); //lost on plate side
  1072.           return fatePlate;
  1073.       }
  1074.  
  1075.       //Ray hits light guide
  1076.       histoPlate->Fill(pointsPlate[0].y(), pointsPlate[0].z()); // entry point
  1077.  
  1078.   }
  1079.   else {
  1080.       //rayout = rayin;
  1081.       if(draw) rayout->DrawS(center.x(), -10.0);
  1082.   }
  1083.  
  1084.   // If the ray is not reflected in the plate
  1085.   // Draw the light guide and propagate the ray through
  1086.  
  1087.   //const int max_n_points = guide->GetMAXODB() + 2;
  1088.   TVector3 points[max_n_points];
  1089.   TVector3 presecisce;
  1090.  
  1091.   int n_points;
  1092.   int fate_glass;
  1093.   CRay *ray0 = new CRay(*rayout);
  1094.   // delete rayout; -> creates dangling reference when tries to delete ray0!
  1095.   //delete rayin; -> delete rayout!
  1096.   CRay *ray1 = new CRay;
  1097.  
  1098.   fate = guide->PropagateRay(*ray0, ray1, &n_points, points);
  1099.   if (dbg) {
  1100.       if (fate == backreflected) printf("DETECTOR::backreflected\n");
  1101.   }
  1102.  
  1103.   line3d->SetLineColor(col_lg);
  1104.   int p_i;
  1105.   if(guide_on) {
  1106.       if(draw) {
  1107.           if(fate == missed) {
  1108.               if (dbg) printf("Detector: fate=missed\n");
  1109.               TVector3 r = ray1->GetR();
  1110.               TVector3 k = ray1->GetK();
  1111.               ray1->Set(r,k);
  1112.               ray1->DrawS(center.x(), 10.0);
  1113.           } else {
  1114.               for(p_i = 0; p_i < n_points-1; p_i++) {
  1115.                   line3d->SetPoint(0, points[p_i].x(), points[p_i].y(), points[p_i].z());
  1116.                   line3d->SetPoint(1, points[p_i+1].x(), points[p_i+1].y(), points[p_i+1].z());
  1117.                   line3d->DrawClone();
  1118.               }
  1119.               if(fate != noreflection) {
  1120.                   if (dbg) printf("Detector: fate != noreflection, fate = %d\n", (int)fate);
  1121.                   if(glass_on) {/*if(fate == 1)*/ ray1->Draw(points[p_i].x(), center.x() + guide->getD() + glass_d);}
  1122.                   else {
  1123.                       ray1->SetColor(col_out);
  1124.                       ray1->DrawS(points[p_i].x(), 10.0);
  1125.                   }
  1126.               }
  1127.           }
  1128.       }
  1129.  
  1130.  
  1131.       if(! (fate == hitExit or fate == refracted) ) {
  1132.           if (dbg) printf("Detector: fate != hit, refracted\n");
  1133.           *out = *ray1;
  1134.           delete ray0;
  1135.           delete ray1;
  1136.           delete rayout;
  1137.           delete rayin;
  1138.           return fate;
  1139.       }
  1140.   } else {
  1141.       if (dbg) printf("Detector: fate = hit or refracted");
  1142.       ray1 = ray0;
  1143.       if(draw) {
  1144.           //double epoxy = parameters->getGlassD();
  1145.           if(glass_on) ray1->Draw(center.x(), center.x() + glass_d);
  1146.           else ray1->DrawS(center.x(), 10.0);
  1147.       }
  1148.   }
  1149.  
  1150.   fate = missed; // zgresil aktivno povrsino
  1151.   if(glass_on) {
  1152.       *ray0 = *ray1;
  1153.       ray1->SetColor(col_rgla);
  1154.       fate_glass = glass->PropagateRay(*ray0, ray1, &presecisce);
  1155.       if(fate_glass == REFRACTION) {
  1156.           hglass->Fill(presecisce.y(), presecisce.z());
  1157.           if(draw) ray1->DrawS(presecisce.x(), 10.0);
  1158.           //if(active->TestIntersection(&presecisce, *ray1)) {
  1159.           //fate = hitExit;
  1160.           //hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1161.           //hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
  1162.           //}
  1163.           //if(detector->TestIntersection(&presecisce, *ray1))
  1164.           //hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1165.           //} else if(fate_glass == REFLECTION) {
  1166.           else
  1167.             if(draw) ray1->DrawS(presecisce.x(), 10.0);
  1168.       }
  1169.   }
  1170.  
  1171.   // Main test: ray and SiPM surface
  1172.   if(active->TestIntersection(&presecisce, *ray1)) {
  1173.       fate = hitExit;
  1174.       hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1175.       hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
  1176.   }
  1177.   // If it is on the same plane as SiPM
  1178.   if(detector->TestIntersection(&presecisce, *ray1))
  1179.     hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1180.   //}
  1181.   //} else {
  1182.   //if(draw) ray1->Draw(presecisce.x(), center.x()+d+window_d);
  1183.   //}
  1184.  
  1185.   *out = *ray1;
  1186.   delete ray0;
  1187.   delete ray1;
  1188.   delete rayout;
  1189.   delete rayin;
  1190.   return fate;
  1191. }
  1192.  
  1193. void CDetector::Draw(int width)
  1194. {
  1195.   if(guide_on) {
  1196.       if( TMath::Abs(guide->getN1()-guide->getN2()) < MARGIN ) {
  1197.           if(_plateOn) plate->drawSkel(col_LG, width);
  1198.           guide->DrawSkel(col_LG, width);
  1199.       }
  1200.       else {
  1201.           if(_plateOn) plate->draw(4, width);
  1202.           guide->Draw(col_LG, width);
  1203.       }
  1204.   }
  1205.  
  1206.   if(glass_on) glass_circle->Draw(col_glass, width);
  1207.   //window_circle->Draw(col_glass, width);
  1208.   active->Draw(col_active, width);
  1209. }
  1210.  
  1211.  
  1212. Plate::Plate(DetectorParameters& parameters)
  1213. {
  1214.   TVector3 center = CENTER;
  1215.   const double b = parameters.getB();
  1216.   const double n1 = parameters.getN1();
  1217.   const double n2 = parameters.getN2();
  1218.   const double t = b/2.;
  1219.   const double plateWidth = parameters.getPlateWidth();
  1220.   center.SetX( CENTER.X() - plateWidth );
  1221.  
  1222.   plate_edge[0].SetXYZ(0.0, t,-t);
  1223.   plate_edge[1].SetXYZ(0.0, t, t);
  1224.   plate_edge[2].SetXYZ(0.0,-t, t);
  1225.   plate_edge[3].SetXYZ(0.0,-t,-t);
  1226.   plate_edge[4].SetXYZ(plateWidth, t,-t);
  1227.   plate_edge[5].SetXYZ(plateWidth, t, t);
  1228.   plate_edge[6].SetXYZ(plateWidth,-t, t);
  1229.   plate_edge[7].SetXYZ(plateWidth,-t,-t);
  1230.  
  1231.   for(int i = 0; i<8; i++) plate_edge[i] += center;
  1232.  
  1233.   sides[0] = new CSurface(SURF_REFRA, plate_edge, n1, n2, c_reflectivity);
  1234.   sides[0]->FlipN();
  1235.  
  1236.   sides[1] = new CSurface(SURF_REFRA, plate_edge[3], plate_edge[2], plate_edge[6], plate_edge[7], n2, n2, c_reflectivity);
  1237.   sides[2] = new CSurface(SURF_REFRA, plate_edge[2], plate_edge[1], plate_edge[5], plate_edge[6], n2, n2, c_reflectivity);
  1238.   sides[3] = new CSurface(SURF_REFRA, plate_edge[1], plate_edge[0], plate_edge[4], plate_edge[5], n2, n2, c_reflectivity);
  1239.   sides[4] = new CSurface(SURF_REFRA, plate_edge[0], plate_edge[3], plate_edge[7], plate_edge[4], n2, n2, c_reflectivity);
  1240.  
  1241.   sides[5] = new CSurface(SURF_REFRA, &plate_edge[4], n2, n2, c_reflectivity);
  1242.   sides[5]->FlipN();
  1243.  
  1244.   for(int i=0; i<6; i++) sides[i]->SetFresnel(1);
  1245. }
  1246.  
  1247. void Plate::draw(int color, int width)
  1248. {
  1249.   for(int i = 0; i<6; i++) sides[i]->Draw(color, width);
  1250. }
  1251.  
  1252. void Plate::drawSkel(int color, int width)
  1253. {
  1254.   TPolyLine3D line3d(2);
  1255.   line3d.SetLineWidth(width);
  1256.   line3d.SetLineColor(color);
  1257.  
  1258.   for(int i=0; i<4; i++) {
  1259.       line3d.SetPoint(0, plate_edge[i+0].x(), plate_edge[i+0].y(), plate_edge[i+0].z());
  1260.       line3d.SetPoint(1, plate_edge[i+4].x(), plate_edge[i+4].y(), plate_edge[i+4].z());
  1261.       line3d.DrawClone();
  1262.   }
  1263. }
  1264.  
  1265. Fate Plate::propagateRay(CRay in, CRay *out, int *n_points, TVector3 *points)
  1266. {
  1267.   CRay ray0;
  1268.   CRay ray1;
  1269.   TVector3 vec0, vec1;
  1270.   Fate fate = enter;
  1271.   int inters_i = 0;
  1272.  
  1273.   ray0 = in;
  1274.   int n_odb = 0;
  1275.   int last_hit = 0;
  1276.   int propagation = 0;
  1277.  
  1278.   int result = sides[0]->PropagateRay(ray0, &ray1, &vec1);
  1279.   if( !result ) {
  1280.       // ce -NI- presecisca z vstopno
  1281.       fate = missed;
  1282.   } else if(result == REFLECTION) {
  1283.       if (dbg) printf("PLATE: reflected\n");
  1284.       ray0 = ray1;
  1285.       fate = backreflected;
  1286.   } else {
  1287.       points[0] = ray1.GetR();
  1288.       //hfate->Fill(enter);
  1289.       //hin->Fill(vec1.y(), vec1.z());
  1290.       while (n_odb++ < MAX_REFLECTIONS) {
  1291.           ray0 = ray1;
  1292.           vec0 = vec1;
  1293.           propagation = 11;
  1294.           for(inters_i=0; inters_i<6; inters_i++) {
  1295.               if( inters_i != last_hit) {
  1296.                   if( sides[inters_i]->TestIntersection(&vec1, ray1) ) break;
  1297.               }
  1298.           }
  1299.           points[n_odb] = vec1;
  1300.           if(inters_i == 0) {
  1301.               ray0 = ray1;
  1302.               fate = backreflected;
  1303.               break;} // backreflection
  1304.  
  1305.           propagation = sides[inters_i]->PropagateRay(ray0, &ray1, &vec1);
  1306.           if(inters_i == 5) { // successfull exit
  1307.               fate = hitExit;
  1308.               //hout->Fill(vec1.y(), vec1.z());
  1309.               //hnodb_exit->Fill(n_odb-1);
  1310.               n_odb++;
  1311.               points[n_odb] = vec1;
  1312.               ray0 = ray1;
  1313.               break;
  1314.           }
  1315.           if(propagation == 1) {
  1316.               fate = noreflection; //at side
  1317.               n_odb++;
  1318.               points[n_odb] = vec1;
  1319.               ray0 = ray1;
  1320.               break;} // no total reflection when should be
  1321.  
  1322.           if(propagation == -2) {
  1323.               fate = noreflection;
  1324.               break;
  1325.           } // absorption due to finite reflectivity
  1326.  
  1327.           last_hit = inters_i;
  1328.       }
  1329.   }
  1330.  
  1331.   *n_points = n_odb+1;
  1332.   *out = ray0;
  1333.   return fate;
  1334. };
  1335.  
  1336.  
  1337.