Subversion Repositories f9daq

Rev

Rev 71 | Rev 73 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed

  1. #include "include/guide.h"
  2.  
  3. #include <iostream>
  4.  
  5. // vector output shortcut
  6. void printv(TVector3 v)
  7. {
  8.   printf("(x,y,z) = (%.4lf, %.4lf, %.4lf)\n", v.x(), v.y(), v.z());
  9. }
  10. // TVector3::Rotate does not seem accurate enough
  11. TVector3 rotatey(TVector3 v, double theta)
  12. {
  13.   return TVector3(v.x() * TMath::Cos(theta) + v.z() * TMath::Sin(theta),
  14.       v.y(),
  15.       -v.x() * TMath::Sin(theta) + v.z() * TMath::Cos(theta));
  16. }
  17. // another shortcut not found in TMath
  18. int sign(double in)
  19. {
  20.   if(in >= 0.0) return 1;
  21.   else return -1;
  22. }
  23. //=================================================================================
  24.  
  25. //-----------------------------------------------------------------------------
  26. void CRay::Set(TVector3 r0, TVector3 n0)
  27. {
  28.   r = r0; n = n0.Unit();
  29. }
  30. //-----------------------------------------------------------------------------
  31. //void CRay::Set(double x0, double y0, double z0, double l0, double m0, double n0)
  32. //{
  33. //r.SetXYZ(x0, y0, z0);
  34. //n.SetXYZ(l0, m0, n0); n = n.Unit();
  35. //}
  36. //-----------------------------------------------------------------------------
  37. /*
  38. CRay& CRay::operator = (const CRay& p)
  39. {
  40.         r.SetXYZ(p.GetR().x(), p.GetR().y(), p.GetR().z());
  41.         //this->r.SetXYZ(p.x(), p.y(), p.z());
  42.         n.SetXYZ(p.GetN().x(), p.GetN().y(), p.GetN().z());
  43.         return *this;
  44. } */
  45. //-----------------------------------------------------------------------------
  46. void CRay::Print()
  47. {
  48.   printf("---> CRay::Print() <---\n");
  49.   printf("(x,y,z)=(%.2lf, %.2lf, %.2lf); (l,m,n)=(%.2lf, %.2lf, %.2lf)\n",
  50.       r.x(), r.y(), r.z(), n.x(), n.y(), n.z());
  51. }
  52. //-----------------------------------------------------------------------------
  53. void CRay::Draw()
  54. {
  55.   double t = 50.0;
  56.   TPolyLine3D *line3d = new TPolyLine3D(2);
  57.   //line3d->SetPoint(0, r.x() - t*n.x(), r.y() - t*n.y(), r.z() - t*n.z());
  58.   line3d->SetPoint(0, r.x(), r.y(), r.z());
  59.   line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z());
  60.   line3d->SetLineWidth(1);
  61.   line3d->SetLineColor(color);
  62.  
  63.   line3d->Draw();
  64. }
  65. //-----------------------------------------------------------------------------
  66. void CRay::Draw(double x_from, double x_to)
  67. {
  68.   double A1, A2;
  69.   TPolyLine3D *line3d = new TPolyLine3D(2);
  70.  
  71.   if(n.x() < MARGIN) {
  72.       A1 = A2 = 0.0;
  73.   } else {
  74.       A1 = (x_from - r.x())/n.x();
  75.       A2 = (x_to - r.x())/n.x();
  76.   }
  77.  
  78.   line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z());
  79.   line3d->SetPoint(1, x_to, A2*n.y()+r.y(), A2*n.z()+r.z());
  80.   line3d->SetLineWidth(1);
  81.   line3d->SetLineColor(color);
  82.  
  83.   line3d->Draw();
  84. }
  85. //-----------------------------------------------------------------------------
  86. void CRay::DrawS(double x_from, double t)
  87. {
  88.   double A1;
  89.   TPolyLine3D *line3d = new TPolyLine3D(2);
  90.  
  91.   if(n.x() < MARGIN)
  92.     A1 = 0.0;
  93.   else
  94.     A1 = (x_from - r.x())/n.x();
  95.  
  96.   line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z());
  97.   line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z());
  98.   line3d->SetLineWidth(1);
  99.   line3d->SetLineColor(color);
  100.  
  101.   line3d->Draw();
  102. }
  103. //=================================================================================
  104.  
  105.  
  106. //=================================================================================
  107. CPlane4::CPlane4() :
  108.             n(TVector3(1.0, 0.0, 0.0)),
  109.             A(0),
  110.             B(0),
  111.             C(0),
  112.             D(0)
  113. { r[0] = TVector3(0.0,-1.0,-1.0);
  114. r[1] = TVector3(0.0,-1.0, 1.0);
  115. r[2] = TVector3(0.0, 1.0, 1.0);
  116. r[3] = TVector3(0.0, 1.0,-1.0);
  117. for(int i=0;i<4;i++) edge[i] = TVector3(0,0,0);
  118. for(int i=0;i<4;i++) angle_r[i] = 0;
  119. };
  120. //-----------------------------------------------------------------------------
  121. CPlane4::CPlane4(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
  122. {
  123.   //Set(r1, r2, r3, r4);
  124.   //}
  125.   //-----------------------------------------------------------------------------
  126.   // za izracun parametrov ravnine je en vektor prevec, vendar tega
  127.   // rabim kot zadnji vogal poligona
  128.   //void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
  129.   //{
  130.   double x1,y1,z1, x2,y2,z2, x3,y3,z3;
  131.  
  132.   x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
  133.   x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
  134.   x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
  135.  
  136.   A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
  137.   B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
  138.   C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
  139.   D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
  140.  
  141.   r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
  142.   n.SetXYZ(A, B, C);
  143.   n = n.Unit();
  144.  
  145.   for(int i=0;i<4;i++)
  146.     edge[i] = r[i-3 ? i+1 : 0] - r[i];
  147.  
  148.   for(int i=0;i<4;i++)
  149.     angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
  150. };
  151.  
  152. void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
  153. {
  154.   double x1,y1,z1, x2,y2,z2, x3,y3,z3;
  155.  
  156.   x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
  157.   x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
  158.   x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
  159.  
  160.   A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
  161.   B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
  162.   C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
  163.   D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
  164.  
  165.   r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
  166.   n.SetXYZ(A, B, C);
  167.   n = n.Unit();
  168.  
  169.   for(int i=0;i<4;i++)
  170.     edge[i] = r[i-3 ? i+1 : 0] - r[i];
  171.  
  172.   for(int i=0;i<4;i++)
  173.     angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
  174. };
  175.  
  176. CPlane4::CPlane4(TVector3 *vr)
  177. {
  178.   double x1,y1,z1, x2,y2,z2, x3,y3,z3;
  179.  
  180.   x1 = vr[0].x(); y1 = vr[0].y(); z1 = vr[0].z();
  181.   x2 = vr[1].x(); y2 = vr[1].y(); z2 = vr[1].z();
  182.   x3 = vr[2].x(); y3 = vr[2].y(); z3 = vr[2].z();
  183.  
  184.   A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
  185.   B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
  186.   C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
  187.   D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
  188.  
  189.   r[0] = vr[0]; r[1] = vr[1]; r[2] = vr[2]; r[3] = vr[3];
  190.   n.SetXYZ(A, B, C);
  191.   n = n.Unit();
  192.  
  193.   for(int i=0;i<4;i++)
  194.     edge[i] = r[i-3 ? i+1 : 0] - r[i];
  195.  
  196.   for(int i=0;i<4;i++)
  197.     angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
  198. };
  199. //-----------------------------------------------------------------------------
  200. // posce presecisce !neskoncne! ravnine s premico (class CRay)
  201. // ce najde presecisce vrne 1
  202. int CPlane4::GetIntersection(TVector3 *vec, CRay ray)
  203. {
  204.   TVector3 N; //nenormirani vektor (A,B,C)
  205.   double num, den; //stevec, imenovalec
  206.   double t;
  207.   TVector3 tmp;
  208.  
  209.   N.SetXYZ(A,B,C);
  210.  
  211.   num = N*ray.GetR() + D;
  212.   den = N*ray.GetN();
  213.  
  214.   if (dbg) printf("t = %6.3lf / %6.3lf =  %6.3lf\n", num, den, num/den);
  215.  
  216.   //if(den == 0)
  217.   if(TMath::Abs(den) < MARGIN) {
  218.       //if(num == 0)
  219.       if(TMath::Abs(num) < MARGIN) {
  220.           if (dbg) printf("The ray is on the surface!\n");
  221.           return 0; //return 2; // premica lezi na ravnini
  222.       }
  223.       else {
  224.           if (dbg) printf("The ray is parallel to the surface!\n");
  225.           return 0; // ni presecisca
  226.       }
  227.   }
  228.  
  229.   t = num / den;
  230.  
  231.   tmp = ray.GetR();
  232.   tmp -= t*ray.GetN();
  233.   *vec = tmp;
  234.   return 1;
  235. }
  236. //-----------------------------------------------------------------------------
  237. // ali je vektor vec, ki lezi na ravnini skupaj z e1 in e2, med njima
  238. // angle_r je kot med e1 in e2, vsi vektorji imajo skupno izhodisce
  239. int CPlane4::IsInTri(TVector3 vec, TVector3 e1, TVector3 e2, double angle)
  240. {
  241.   double angle_ve1, angle_ve2;
  242.  
  243.   if(dbg) printf("--- CPlane4::IsInTri ---\n");
  244.  
  245.   angle_ve1 = TMath::ACos(/*TMath::Abs*/( (e1.Unit()) * (vec.Unit()) ));
  246.   angle_ve2 = TMath::ACos(/*TMath::Abs*/( (e2.Unit()) * (vec.Unit()) ));
  247.  
  248.   if(dbg)
  249.     {
  250.       printf("angle_ve1 = %lf\n", angle_ve1*DEGREE);
  251.       printf("angle_ve2 = %lf\n", angle_ve2*DEGREE);
  252.       printf("angle_sum = %lf\n", (angle_ve1 + angle_ve2)*DEGREE);
  253.       printf("  angle_r   = %lf\n", angle*DEGREE);
  254.     }
  255.  
  256.   bool difference = (MARGIN < TMath::Abs(angle - (angle_ve1 + angle_ve2)));
  257.   if (dbg) printf("  MARGIN < Difference = %d\n", difference);
  258.   return (int) !difference;
  259. }
  260. //-----------------------------------------------------------------------------
  261. // ali je vektor vec, ki lezi na ravnini!, znotraj meja, ki jih definirajo
  262. // strije vogali te ravnine r[i]
  263. int CPlane4::IsVectorIn(TVector3 vec)
  264. {
  265.   int status;
  266.  
  267.   if(dbg) printf("--- CPlane4::IsVectorIn ---\n");
  268.  
  269.   for(int i=0;i<3;i++)
  270.     {
  271.       status = IsInTri(vec - r[i], edge[i], -edge[i ? i-1 : 3], angle_r[i]);
  272.       if(dbg) printf("  [%d] vec is %s\n", i, status ? "inside" : "outside");
  273.       if(!status) return 0;
  274.     }
  275.  
  276.   return 1;
  277. }
  278. //-----------------------------------------------------------------------------
  279. int CPlane4::TestIntersection(CRay in)
  280. {
  281.   TVector3 tmp;
  282.  
  283.   if( GetIntersection(&tmp, in) )
  284.     if( IsVectorIn(tmp) )
  285.       return 1;
  286.  
  287.   return 0;
  288. }
  289. //-----------------------------------------------------------------------------
  290. int CPlane4::TestIntersection(TVector3 *vec, CRay in)
  291. {
  292.   TVector3 tmp;
  293.  
  294.   if( GetIntersection(&tmp, in) )
  295.     if( IsVectorIn(tmp) ) {
  296.         *vec = tmp;
  297.         return 1;
  298.     }
  299.  
  300.   return 0;
  301. }
  302. //-----------------------------------------------------------------------------
  303. void CPlane4::Print()
  304. {
  305.   printf("--- CPlane4::Print() ---\n");
  306.   printf("  r=(%.2lf, %.2lf, %.2lf); n=(%.2lf, %.2lf, %.2lf); ",
  307.       r[0].x(), r[0].y(), r[0].z(), n.x(), n.y(), n.z());
  308.   printf(  "(A,B,C,D)=(%.2lf, %.2lf, %.2lf, %.2lf) \n", A, B, C, D);
  309.   for(int i=0;i<4;i++) printf("  edge[%d] = (%lf, %lf, %lf)\n", i, edge[i].x(), edge[i].y(), edge[i].z());
  310.   for(int i=0;i<4;i++) printf("  angle[%d] = %lf\n", i, angle_r[i]*DEGREE);
  311. }
  312. //-----------------------------------------------------------------------------
  313. void CPlane4::Draw(int color, int width)
  314. {
  315.   TPolyLine3D *line3d = new TPolyLine3D(5);
  316.  
  317.   for(int i=0;i<4;i++) line3d->SetPoint(i, r[i].x(), r[i].y(), r[i].z());
  318.   line3d->SetPoint(4, r[0].x(), r[0].y(), r[0].z());
  319.   line3d->SetLineWidth(width); line3d->SetLineColor(color);
  320.  
  321.   line3d->Draw();
  322. }
  323. //=================================================================================
  324.  
  325.  
  326. //=================================================================================
  327. CSurface::CSurface(int type0):
  328.       type(type0)
  329. {
  330.   TVector3 vr[4];
  331.   TDatime now;
  332.  
  333.   vr[0].SetXYZ(0.0,-1.0,-1.0);
  334.   vr[1].SetXYZ(0.0,-1.0, 1.0);
  335.   vr[2].SetXYZ(0.0, 1.0, 1.0);
  336.   vr[3].SetXYZ(0.0, 1.0,-1.0);
  337.   //CPlane4::Set(vr);
  338.   SetIndex(1.0, 1.5);
  339.  
  340.   reflection = c_reflectivity;
  341.   rand.SetSeed(now.Get());
  342.  
  343.   SetFresnel();
  344. }
  345. //-----------------------------------------------------------------------------
  346. CSurface::CSurface(int type0, TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4, double n10, double n20, double reflectivity)
  347. {
  348.   TDatime now;
  349.  
  350.   type = type0; CPlane4::Set(r1, r2, r3, r4);
  351.   SetIndex(n10, n20);
  352.  
  353.   reflection = reflectivity;
  354.   rand.SetSeed(now.Get());
  355.  
  356.   SetFresnel();
  357. }
  358. //-----------------------------------------------------------------------------
  359. CSurface::CSurface(int type0, TVector3 *vr, double n10, double n20, double reflectivity)
  360. {
  361.   TDatime now;
  362.  
  363.   type = type0; CPlane4::Set(vr);
  364.   SetIndex(n10, n20);
  365.  
  366.   reflection = reflectivity;
  367.   rand.SetSeed(now.Get());
  368.  
  369.   SetFresnel();
  370. }
  371. //-----------------------------------------------------------------------------
  372. void CSurface::SetIndex(double n10, double n20)
  373. {
  374.   n1 = n10; n2 = n20; n1_n2 = n1/n2;
  375.  
  376.   if(n1 > n2)
  377.     cosTtotal = TMath::Sqrt( 1 - TMath::Power(n2/n1, 2) );
  378.   else
  379.     cosTtotal = 0.0;
  380. }
  381. //-----------------------------------------------------------------------------
  382. // sprejme zarek, vrne uklonjen/odbit zarek in presecisce
  383. // vrne 0 ce ni presecisca; 1 ce se je lomil
  384. // 2 ce se je odbil; -2 ce se je absorbiral
  385. int CSurface::PropagateRay(CRay in, CRay *out, TVector3 *intersection)
  386. {
  387.   if (dbg) printf("--- CSurface::PropagateRay ---\n");
  388.   double cosTi; // incident ray angle
  389.   double cosTt; // transmited ray angle
  390.   TVector3 intersect, transmit;
  391.  
  392.   if( !(GetIntersection(&intersect, in) == 1) )
  393.     return 0;
  394.  
  395.   *intersection = intersect;
  396.   if( !IsVectorIn(intersect) )
  397.     return 0;
  398.  
  399.   // --------------- Fresnel ----------------------------------------------------
  400.   // R_f = a_te * R_te  +  a_tm * R_tm
  401.   // e - electrical/perependicular
  402.   // m - magnetic polarization/parallel
  403.   double r_te=0;
  404.   double r_tm=0;
  405.   double R_te=0; // s reflection coefficient
  406.   double R_tm=0; // p reflection coefficient
  407.   double R_f = 0.0;
  408.   double a_te = 0.0; // s-wave amplitude, cos Alpha
  409.   double a_tm = 0.0; // p-wave amplitude, sin Alpha
  410.   TVector3 v_te; // unit s-polarization vector
  411.   TVector3 v_tm; // unit p-polarization vector
  412.   TVector3 v_tm_t;// transmited polarization parallel with the plane of incidence
  413.   TVector3 pol_t = in.GetP(); // transmited polarization
  414.   int sign_n; // sign of normal direction vs. inbound ray
  415.   double cosTN; // debug
  416.  
  417.   if(fresnel) {
  418.       // p-polarization unit vector v_te
  419.       // is in the plane orthogonal to the plane of incidence
  420.       // defined as the plane spanned by
  421.       // incident surface vector n and wave vector k
  422.       // k in this notation is in.GetN()
  423.       v_te = n.Cross(in.GetN());
  424.       v_te = v_te.Unit();
  425.       v_tm = -v_te.Cross(in.GetN());
  426.       v_tm = v_tm.Unit();
  427.       if(dbg) {
  428.           printf("  v_te = "); printv(v_te);
  429.           printf("  v_tm = "); printv(v_tm);
  430.       }
  431.  
  432.       double cosAf = v_te * in.GetP();
  433.       if(dbg) printf("  cosAf = %lf (Af = %lf)\n", cosAf, TMath::ACos(cosAf)*DEGREE);
  434.  
  435.       a_te = cosAf;
  436.       a_tm = TMath::Sqrt(1 - cosAf*cosAf);
  437.       if(dbg) printf("  a_te = %lf, a_tm = %lf\n", a_te, a_tm);
  438.   }
  439.   // ----------------------------------------------------------------------------
  440.  
  441.   // reflection probability
  442.   double p_ref = rand.Uniform(0.0, 1.0);
  443.  
  444.   if(type == SURF_TOTAL) type = SURF_REFRA;
  445.   switch(type){
  446.   // ----------------------------------------------------------------------------
  447.   // --------------- refraction from n1 to n2 -----------------------------------
  448.   // ----------------------------------------------------------------------------
  449.   case SURF_REFRA:
  450.     cosTi = in.GetN() * n;
  451.     if(dbg) printf("  cosTi = %lf (Ti = %lf)\n", cosTi, TMath::ACos(cosTi)*DEGREE);
  452.     sign_n = -sign(cosTi);
  453.     if(dbg) printf("  sign_n = %d\n", sign_n);
  454.     cosTi = TMath::Abs(cosTi);
  455.  
  456.     // Check if there can be total reflection: n1 > n2
  457.     if(N1_N2(-sign_n) < 1.0)
  458.       cosTtotal = TMath::Sqrt( 1 - TMath::Power(N1_N2(-sign_n), 2) );
  459.     else
  460.       cosTtotal = 0.0;
  461.  
  462.     if(dbg) printf("  cosTtotal = %lf (Ttotal = %lf)\n", cosTtotal, TMath::ACos(cosTtotal)*DEGREE);
  463.     // reflection dependance on polarization missing
  464.     // reflection hardcoded to 0.96
  465.     if (dbg) printf("   reflection probability = %f\n", p_ref);
  466.  
  467.     // If n1>n2 and theta>thetaCritical, total reflection
  468.     if(cosTi < cosTtotal) {
  469.         if(dbg) printf("  TOTAL\n");
  470.         transmit = in.GetN() + sign_n*2*cosTi*n;
  471.  
  472.         if(dbg) {
  473.             cosTN = TMath::Abs(transmit.Unit() * n);
  474.             printf("  cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
  475.         }
  476.         out->Set(intersect, transmit);
  477.  
  478.         // Shift?
  479.         pol_t = -in.GetP() + sign_n*2*cosTi*n;
  480.         out->SetPolarization(pol_t);
  481.         return REFLECTION;
  482.     } else {
  483.         // reflection or refraction according to Fresnel equations
  484.         if(dbg) printf("  REFRACTION\n");
  485.         if(dbg) printf("  N1_N2(sign_n) = %lf\n", N1_N2(sign_n));
  486.         cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
  487.         if(dbg) printf("  cosTt = %lf (Tt = %lf) \n", cosTt, TMath::ACos(cosTt)*DEGREE);
  488.  
  489.         transmit = N1_N2(sign_n)*in.GetN() + sign_n*(N1_N2(sign_n)*cosTi - cosTt)*n;
  490.         if(dbg) {printf("  transmit.Unit() = "); printv(transmit.Unit());}
  491.         if(dbg) {
  492.             cosTN = transmit.Unit() * n;
  493.             printf("  cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
  494.         }
  495.  
  496.         //if(cosTi<=cosTtotal) cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
  497.         //if(fresnel) {
  498.         r_te = (n1*cosTi - n2*cosTt)/(n1*cosTi + n2*cosTt); // transverse
  499.         r_tm = (n2*cosTi - n1*cosTt)/(n1*cosTt + n2*cosTi); // paralel
  500.  
  501.         if(dbg) printf("  r_te = %lf, r_tm = %lf\n", r_te, r_tm);
  502.  
  503.         // transmited polarization
  504.         v_tm_t = -v_te.Cross(transmit);
  505.         v_tm_t = v_tm_t.Unit();
  506.         pol_t = a_te * (1.0 -  TMath::Abs(r_te)) * v_te  +  a_tm * (1.0 -  TMath::Abs(r_tm)) * v_tm_t;
  507.  
  508.         if(dbg) {
  509.             printf("  v_tm_t = "); printv(v_tm_t);
  510.             printf("  pol_t = "); printv(pol_t);
  511.         }
  512.  
  513.         // Fresnel coefficients
  514.         R_te = TMath::Power(r_te, 2);
  515.         R_tm = TMath::Power(r_tm, 2);
  516.         R_f = a_te*a_te*R_te + a_tm*a_tm*R_tm;
  517.  
  518.         if (dbg) printf("  R_te = %lf, R_tm = %lf, R_f = %lf\n", R_te, R_tm, R_f);
  519.     }
  520.  
  521.     if(p_ref >= R_f) { // se lomi
  522.         if (dbg) printf("   SURFACE REFRACTED. Return.\n");
  523.         out->Set(intersect, transmit);
  524.         out->SetPolarization(pol_t);
  525.         return REFRACTION;
  526.     } else { // se odbije
  527.         if (dbg) printf("   SURFACE REFLECTED. p_ref=%f, R_f=%f\n", p_ref, R_f);
  528.         transmit = in.GetN() + sign_n*2*cosTi*n;
  529.         out->Set(intersect, transmit);
  530.         pol_t = -in.GetP() + sign_n*2*cosTi*n;
  531.         out->SetPolarization(pol_t);
  532.         return REFLECTION;
  533.     }
  534.  
  535.     //}
  536.     break;
  537.  
  538.     // ----------------------------------------------------------------------------
  539.     // --------------- reflection at "reflection" probability ---------------------
  540.     // ----------------------------------------------------------------------------
  541.   case SURF_REFLE:
  542.     p_ref = rand.Uniform(0.0, 1.0);
  543.     if(p_ref < reflection) { // se odbije
  544.         cosTi = in.GetN() * n;
  545.         transmit = in.GetN() - 2*cosTi*n;
  546.         out->Set(intersect, transmit);
  547.         return REFLECTION; //sdhfvjhsdbfjhsdbcvjhsb
  548.     } else { // se ne odbije
  549.         transmit = in.GetN();
  550.         out->Set(intersect, transmit);
  551.         return ABSORBED;
  552.     }
  553.     break;
  554.  
  555.     // total reflection from n1 to n2 with R probbability
  556.   case SURF_IMPER:
  557.     p_ref = rand.Uniform(0.0, 1.0);
  558.     if(p_ref < reflection) { // se odbije
  559.         cosTi = in.GetN() * n;
  560.         if(TMath::Abs(cosTi) < cosTtotal) { // totalni odboj
  561.             transmit = in.GetN() - 2*cosTi*n;
  562.             out->Set(intersect, transmit);
  563.         } else { // ni tot. odboja
  564.             transmit = in.GetN();
  565.             out->Set(intersect, transmit);
  566.             return ABSORBED;
  567.         }
  568.     } else { // se ne odbije
  569.         transmit = in.GetN();
  570.         out->Set(intersect, transmit);
  571.         return ABSORBED;
  572.     }
  573.     break;
  574.  
  575.   default:
  576.     *out = in;
  577.     break;
  578.   }
  579.  
  580.   return REFRACTION;
  581. }
  582. //=================================================================================
  583.  
  584.  
  585. //=================================================================================
  586. Guide::Guide(TVector3 center0, DetectorParameters &parameters) :
  587.     _d(parameters.getD()),
  588.     _n1(parameters.getN1()),
  589.     _n2(parameters.getN2()),
  590.     _n3(parameters.getN3()),
  591.     _r(c_reflectivity),
  592.     _absorption(0),
  593.     _A(0),
  594.     _badCoupling(parameters.badCoupling())
  595. {
  596.   double t;
  597.   TDatime now;
  598.   rand.SetSeed(now.Get());
  599.   center = center0;
  600.   double b = parameters.getB();
  601.   double a = parameters.getA();
  602.   // if PlateOn, then n0 = n3 (optical grease), else = n1 (air)
  603.   //double n0 = (parameters.getPlateOn() ? parameters.getN3(): n1);
  604.   double n0 = (parameters.getPlateOn() ? _n2 : _n1);
  605.   int fresnel = parameters.getFresnel();
  606.  
  607.   // light guide edges
  608.   t = b/2.0;
  609.   vodnik_edge[0].SetXYZ(0.0, t,-t);
  610.   vodnik_edge[1].SetXYZ(0.0, t, t);
  611.   vodnik_edge[2].SetXYZ(0.0,-t, t);
  612.   vodnik_edge[3].SetXYZ(0.0,-t,-t);
  613.   t = a/2.0;
  614.   vodnik_edge[4].SetXYZ(_d, t,-t);
  615.   vodnik_edge[5].SetXYZ(_d, t, t);
  616.   vodnik_edge[6].SetXYZ(_d,-t, t);
  617.   vodnik_edge[7].SetXYZ(_d,-t,-t);
  618.  
  619.   for(int i = 0; i<8; i++) vodnik_edge[i] += center;
  620.  
  621.   // light guide surfaces
  622.   s_side[0] = new CSurface(SURF_REFRA, vodnik_edge, n0, _n2, _r);
  623.   s_side[0]->FlipN();
  624.  
  625.   s_side[1] = new CSurface(SURF_REFRA, vodnik_edge[3], vodnik_edge[2],
  626.       vodnik_edge[6], vodnik_edge[7], _n2, _n1, _r);
  627.   s_side[2] = new CSurface(SURF_REFRA, vodnik_edge[2], vodnik_edge[1],
  628.       vodnik_edge[5], vodnik_edge[6], _n2, _n1, _r);
  629.   s_side[3] = new CSurface(SURF_REFRA, vodnik_edge[1], vodnik_edge[0],
  630.       vodnik_edge[4], vodnik_edge[5], _n2, _n1, _r);
  631.   s_side[4] = new CSurface(SURF_REFRA, vodnik_edge[0], vodnik_edge[3],
  632.       vodnik_edge[7], vodnik_edge[4], _n2, _n1, _r);
  633.   // n3 - ref ind at the exit, grease, air
  634.   s_side[5] = new CSurface(SURF_REFRA, &vodnik_edge[4], _n2, _n3, _r);
  635.   s_side[5]->FlipN();
  636.   // exit surface in the case of bad coupling
  637.   noCoupling = new CSurface(SURF_REFRA, &vodnik_edge[4], _n2, 1.0, _r);
  638.   noCoupling->FlipN();
  639.   // grease = specific pattern area of coupling
  640.   TVector3 activePosition(center);
  641.   activePosition += TVector3(_d, 0, 0);
  642.   TVector3 normal(1,0,0);
  643.   grease = new CPlaneR(activePosition, normal, a/2.0);
  644.  
  645.   if(fresnel) for(int i=0; i<6; i++) s_side[i]->SetFresnel(1);
  646.  
  647.   // statistics histograms
  648.   hfate = (TH1F*)gROOT->FindObject("hfate"); if(hfate) delete hfate;
  649.   hfate = new TH1F("hfate", "Ray fate", 8, -3.5, 4.5);
  650.   (hfate->GetXaxis())->SetBinLabel(1, "Back Ref");
  651.   (hfate->GetXaxis())->SetBinLabel(2, "No Ref");
  652.   (hfate->GetXaxis())->SetBinLabel(3, "Refrac");
  653.   (hfate->GetXaxis())->SetBinLabel(4, "LG Miss");
  654.   (hfate->GetXaxis())->SetBinLabel(5, "Exit");
  655.   (hfate->GetXaxis())->SetBinLabel(6, "Enter");
  656.   (hfate->GetXaxis())->SetBinLabel(7, "Rays");
  657.   (hfate->GetXaxis())->SetBinLabel(8, "Absorb");
  658.  
  659.   hnodb_all = (TH1F*)gROOT->FindObject("hnodb_all"); if(hnodb_all) delete hnodb_all;
  660.   hnodb_all = new TH1F("hnodb_all", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
  661.  
  662.   hnodb_exit = (TH1F*)gROOT->FindObject("hnodb_exit"); if(hnodb_exit) delete hnodb_exit;
  663.   hnodb_exit = new TH1F("hnodb_exit", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
  664.  
  665.   int nBins = nch + 1;
  666.   hin = (TH2F*)gROOT->FindObject("hin"); if(hin) delete hin;
  667.   hin = new TH2F("hin", ";x [mm]; y[mm]", nBins, -b/2.0, +b/2.0, nBins, -b/2.0, +b/2.0);
  668.  
  669.   hout = (TH2F*)gROOT->FindObject("hout"); if(hout) delete hout;
  670.   hout = new TH2F("hout", ";x [mm];y [mm]", nBins, -a/2.0, +a/2.0, nBins, -a/2.0, +a/2.0);
  671. }
  672. //-----------------------------------------------------------------------------
  673. // Sledi zarku skozi vodnik. Vrne:                                            
  674. //  0, ce zgresi vstopno ploskev                                              
  675. //  1, ce zadane izstopno ploskev                                              
  676. // -1, ce se v vodniku ne odbije totalno
  677. //  2, enter the light guide, bin 2 of hfate = refraction                                    
  678. // -2, ce se ne odbije zaradi koncnega R stranic                              
  679. // -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev              
  680. // +4, ce se absorbira v materialu                                            
  681. Fate Guide::PropagateRay(CRay in, CRay *out, int *n_points, TVector3 *points)
  682. {
  683.   if (dbg) printf("--- GUIDE::PropagateRay ---\n");
  684.   // ray0 - incident ray
  685.   // ray1 - trans/refl ray
  686.   CRay ray0;
  687.   CRay ray1;
  688.   TVector3 vec0, vec1;
  689.   int inters_i = 0;
  690.  
  691.   ray0 = in;
  692.   int n_odb = 0;
  693.   int last_hit = 0;
  694.   int propagation = 0;
  695.   int result = s_side[0]->PropagateRay(ray0, &ray1, &vec1);
  696.   if( !(result) ) {
  697.       // ce -NI- presecisca z vstopno
  698.       if (dbg) printf("  GUIDE: missed the light guide\n");
  699.       fate = missed;
  700.       //hfate->Fill(0);
  701.   } else if(result == REFLECTION) {
  702.       if (dbg) printf(" REFLECTED on the entry surface!\n");
  703.       fate = backreflected;
  704.       //hfate->Fill(-3);
  705.   } else {
  706.       if (dbg) printf("  GUIDE: ray entered\n");
  707.       points[0] = ray1.GetR();
  708.       hfate->Fill(enter); // enter
  709.       hin->Fill(vec1.y(), vec1.z());
  710.       if (dbg) printf("  GUIDE: n_odb = %d\n", n_odb);
  711.  
  712.       while (n_odb++ < MAX_REFLECTIONS) {
  713.           if (dbg) printf("  GUIDE: Boundary test: %d\n",n_odb);
  714.           ray0 = ray1;
  715.           vec0 = vec1;
  716.           propagation = 11;
  717.           for(inters_i=0; inters_i<6; inters_i++) {
  718.               if (dbg) printf("  GUIDE: Test intersection with surface %d \n", inters_i);
  719.               if( inters_i != last_hit) {
  720.                   int testBoundary = s_side[inters_i]->TestIntersection(&vec1, ray1);
  721.                   if( testBoundary ) {
  722.                       if (dbg) printf("  GUIDE: ray intersects with LG surface %d\n",inters_i);
  723.                       break;
  724.                   }
  725.               }
  726.           }
  727.           points[n_odb] = vec1;
  728.           if(inters_i == 0) {
  729.               fate = backreflected;
  730.               //hfate->Fill(backreflected);
  731.               break;
  732.           } // backreflection
  733.  
  734.           // the passage is possible, test propagation
  735.           propagation = s_side[inters_i]->PropagateRay(ray0, &ray1, &vec1);
  736.  
  737.           if (dbg) printf("  GUIDE: surface = %d, propagation = %d\n", inters_i, propagation);
  738.  
  739.  
  740.           if(propagation == ABSORBED) {
  741.               fate = noreflection;
  742.               break;
  743.           } //refraction due to finite reflectivity
  744.  
  745.           if(inters_i == 5) {
  746.               if (_badCoupling) {
  747.                   TVector3 hitVector(0,0,0);
  748.                   bool hitActive = grease->TestIntersection(&hitVector, ray0);
  749.                   if (hitActive and dbg) printf("   GUIDE: hit grease\n");
  750.                   if (!hitActive) propagation = noCoupling->PropagateRay(ray0, &ray1, &vec1);
  751.               }
  752.               // check on which side the vector is?
  753.               TVector3 ray = ray1.GetN();
  754.               TVector3 exitNormal = s_side[5]->GetN();
  755.               if (dbg) printf("ray*n_5 = %lf\n", ray*exitNormal);
  756.               if (ray*exitNormal > 0) {
  757.                   if (dbg) printf("  GUIDE: ray is backreflected from exit window.\n");
  758.                   fate = backreflected;
  759.                   n_odb++;
  760.                   points[n_odb] = vec1;
  761.                   ray0 = ray1;
  762.                   break;
  763.               }
  764.               fate =  hitExit;
  765.               hout->Fill(vec1.y(), vec1.z());
  766.               hnodb_exit->Fill(n_odb-1);
  767.               n_odb++;
  768.               points[n_odb] = vec1;
  769.               ray0 = ray1;
  770.               break;
  771.           }
  772.  
  773.           if(propagation == REFRACTION) {
  774.               fate = refracted;
  775.               n_odb++;
  776.               points[n_odb] = vec1;
  777.               ray0 = ray1;
  778.               break;
  779.           } // no total reflection when should be
  780.  
  781.           last_hit = inters_i;
  782.       }
  783.   }
  784.  
  785.   //--- material absorption ---
  786.   if(_absorption) {
  787.       double travel = 0.0;
  788.       if (dbg) printf("n_odb = %d\n", n_odb);
  789.       for(int point = 0; point < n_odb-1; point++) {
  790.           travel += (points[point] - points[point+1]).Mag();
  791.           if (dbg) printf("travel = %lf\n", travel);
  792.       }
  793.       double T_abs = TMath::Exp(-travel/_A);
  794.       if(dbg)printf("T_abs = %lf\n", T_abs);
  795.       double p_abs = rand.Uniform(0.0, 1.0);
  796.       if(dbg)printf("p_abs = %lf\n", p_abs);
  797.  
  798.       if(p_abs > T_abs) fate = absorbed; // absorption
  799.   }
  800.   //--- material absorption ---
  801.  
  802.   hfate->Fill(fate);
  803.   hfate->Fill(rays);
  804.   hnodb_all->Fill(n_odb-2);
  805.   *n_points = n_odb+1;
  806.   *out = ray0;
  807.   return fate;
  808. }
  809. //-----------------------------------------------------------------------------
  810. void Guide::GetVFate(int *out)
  811. {
  812.   for(int i=0;i<7;i++) out[i] = (int)hfate->GetBinContent(i+1);
  813. }
  814. //-----------------------------------------------------------------------------
  815. void Guide::Draw(int color, int width)
  816. {
  817.   for(int i = 0; i<6; i++) s_side[i]->Draw(color, width);
  818. }
  819. //-----------------------------------------------------------------------------
  820. void Guide::DrawSkel(int color, int width)
  821. {
  822.   TPolyLine3D *line3d = new TPolyLine3D(2);
  823.   line3d->SetLineWidth(width); line3d->SetLineColor(color);
  824.  
  825.   for(int i=0; i<4; i++) {
  826.       line3d->SetPoint(0, vodnik_edge[i+0].x(), vodnik_edge[i+0].y(), vodnik_edge[i+0].z());
  827.       line3d->SetPoint(1, vodnik_edge[i+4].x(), vodnik_edge[i+4].y(), vodnik_edge[i+4].z());
  828.       line3d->DrawClone();
  829.   }
  830. }
  831. //=================================================================================
  832.  
  833. //=================================================================================
  834. int CPlaneR::TestIntersection(TVector3 *vec, CRay ray)
  835. {
  836.   double num, den; //stevec, imenovalec
  837.   double t;
  838.   TVector3 tmp;
  839.  
  840.   if(dbg) printf("---> CPlaneR::TestIntersection <---\n");
  841.   if(dbg) {printf("c = "); printv(center); printf(" | n = "); printv(n); printf("\n");}
  842.  
  843.   double D = - n*center;
  844.   num = n*ray.GetR() + D;
  845.   den = n*ray.GetN();
  846.  
  847.   if(dbg) printf("D = %.4lf | num = %.4lf | den = %.4lf\n", D, num, den);
  848.  
  849.   if(TMath::Abs(den) < MARGIN) {
  850.       if(TMath::Abs(num) < MARGIN)
  851.         return 0;
  852.       else
  853.         return 0;
  854.   }
  855.  
  856.   t = num / den;
  857.  
  858.   if(dbg) printf("t = %.4lf | ", t);
  859.  
  860.   tmp = ray.GetR();
  861.   tmp -= t*ray.GetN();
  862.   *vec = tmp;
  863.  
  864.   if(dbg) {printv(tmp); printf(" | Rv = %.4lf <> R = %.4lf\n", ((tmp - center).Mag()), _r);}
  865.  
  866.  
  867.   if( ((tmp - center).Mag()) < _r )
  868.     return 1;
  869.   else
  870.     return 0;
  871. }
  872. //-----------------------------------------------------------------------------
  873. void CPlaneR::Draw(int color, int width)
  874. {
  875.   const int NN = 32;
  876.   double phi, x, y;
  877.  
  878.   TPolyLine3D *arc;
  879.   arc = new TPolyLine3D(NN+1);
  880.   arc->SetLineWidth(width);
  881.   arc->SetLineColor(color);
  882.  
  883.   for(int i=0; i<=NN; i++) {
  884.       phi = i*2.0*TMath::Pi()/NN;
  885.       x = _r*TMath::Cos(phi);
  886.       y = _r*TMath::Sin(phi);
  887.       arc->SetPoint(i, center.x(),  x,  y);
  888.   }
  889.   arc->Draw();
  890. }
  891. //=================================================================================
  892.  
  893.  
  894. //=================================================================================
  895. CDetector::CDetector(TVector3 center0, DetectorParameters& parameters) :
  896.       center(center0),
  897.       glass_on(parameters.getGlassOn()),
  898.       glass_d(parameters.getGlassD()),
  899.       col_in(2),
  900.       col_lg(8),
  901.       col_out(4),
  902.       col_rgla(6),
  903.       col_LG(1),
  904.       col_glass(4),
  905.       col_active(7),
  906.       guide_on(parameters.getGuideOn()),
  907.       guide(new Guide(center0, parameters)),
  908.       plate(new Plate(parameters)),
  909.       _plateWidth(parameters.getPlateWidth()),
  910.       _plateOn(parameters.getPlateOn()),
  911.       offsetY(parameters.getOffsetY()),
  912.       offsetZ(parameters.getOffsetZ())
  913. {
  914.   //  };
  915.  
  916.   //-----------------------------------------------------------------------------
  917.   //void CDetector::Init()
  918.   //{
  919.   double d = parameters.getD();
  920.   double x_offset;
  921.   if(guide_on) x_offset = center.x();
  922.   else x_offset = center.x() - d;
  923.  
  924.   double b = parameters.getB();
  925.   //double n1 = parameters.getN1();
  926.   //double n2 = parameters.getN2();
  927.   double n3 = parameters.getN3();
  928.   double reflectivity = c_reflectivity;
  929.   double x_gap = parameters.getGap().X();
  930.   double y_gap = parameters.getGap().Y();
  931.   double z_gap = parameters.getGap().Z();
  932.  
  933.   // additional glass between at top of SiPM
  934.   // example: epoxy n=1.60
  935.   double n4 = 1.57;
  936.   TVector3 plane_v[4];
  937.   int nBins = nch + 1;
  938.   double p_size = b/2.0;
  939.   plane_v[0].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap - p_size);
  940.   plane_v[1].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap + p_size);
  941.   plane_v[2].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap + p_size);
  942.   plane_v[3].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap - p_size);
  943.   glass = new CSurface(SURF_REFRA, plane_v, n3, n4, reflectivity);
  944.   glass->FlipN();
  945.  
  946.   // additional circular glass between LG and SiPM
  947.   glass_circle = new CPlaneR(TVector3(x_offset+d+glass_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), b);
  948.  
  949.   hglass = (TH2F*)gROOT->FindObject("hglass"); if(hglass) delete hglass;
  950.   hglass = new TH2F("hglass", "",
  951.       nBins, y_gap - p_size, y_gap + p_size,
  952.       nBins, z_gap - p_size, z_gap + p_size);
  953.  
  954.   // SiPM active surface
  955.   p_size = parameters.getActive()/2.0;
  956.   if (dbg) cout<<"SiPM active length "<<parameters.getActive()<<endl;
  957.  
  958.   plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
  959.   plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
  960.   plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
  961.   plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
  962.   active = new CPlane4(plane_v);
  963.   //active surface in case of bad coupling is circle d=a
  964.   TVector3 activePosition(center);
  965.   activePosition += TVector3(d + x_gap, 0, 0);
  966.   TVector3 normal(1,0,0);
  967.   grease = new CPlaneR(activePosition, normal, 1.0*p_size);
  968.  
  969.   hactive = (TH2F*)gROOT->FindObject("hactive"); if(hactive) delete hactive;
  970.   //hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
  971.   hactive = new TH2F("hactive", ";x [mm];y [mm]", nBins, y_gap - p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
  972.  
  973.   p_size = b/2.0;
  974.   //p_size = 2.5;
  975.   //p_size = M*0.6;
  976.   hlaser = (TH2F*)gROOT->FindObject("hlaser"); if(hlaser) delete hlaser;
  977.   hlaser = new TH2F("hlaser", ";x [mm]; y [mm]", nBins, -p_size+offsetY, p_size+offsetY, nBins, -p_size+offsetZ, p_size+offsetZ);
  978.  
  979.   // collection surface in SiPM plane
  980.   p_size = 1.4*b/2.0;
  981.   plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
  982.   plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
  983.   plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
  984.   plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
  985.   detector = new CPlane4(plane_v);
  986.  
  987.   hdetector = (TH2F*)gROOT->FindObject("hdetector"); if(hdetector) delete hdetector;
  988.   //hdetector = new TH2F("hdetector", "Hits detector plane", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
  989.   hdetector = new TH2F("hdetector", ";x [mm]; y [mm]", nBins, y_gap-p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
  990.  
  991.   /*
  992.         window_circle = new CPlaneR(TVector3(x_offset+d+window_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), window_R);  
  993.  
  994.         p_size = M*a;
  995.         plane_v[0].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap - p_size);
  996.         plane_v[1].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap + p_size);
  997.         plane_v[2].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap + p_size);
  998.         plane_v[3].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap - p_size);
  999.         window = new CSurface(SURF_REFRA, plane_v, n1, n2, reflectivity); window->FlipN();
  1000.  
  1001.         hwindow = (TH2F*)gROOT->FindObject("hwindow"); if(hwindow) delete hwindow;
  1002.         hwindow = new TH2F("hwindow", "Hits Window", nch, y_gap - window_R, y_gap + window_R, nch, z_gap - window_R, z_gap + window_R);
  1003.    */
  1004.   p_size = b/2.0;
  1005.   histoPlate = (TH2F*)gROOT->FindObject("histoPlate"); if(histoPlate) delete histoPlate;
  1006.   histoPlate = new TH2F("histoPlate", "Hits on glass plate", nBins, -p_size, +p_size, nBins, -p_size, +p_size);
  1007. }
  1008.  
  1009. //-----------------------------------------------------------------------------
  1010. // vrne 1 ce je zadel aktvino povrsino
  1011. // vrne <1 ce jo zgresi
  1012. int CDetector::Propagate(CRay in, CRay *out, int draw)
  1013. // Sledi zarku skozi vodnik. Vrne:                                            
  1014. //  0, ce zgresi vstopno ploskev MISSED                                              
  1015. //  1, ce zadane izstopno ploskev HIT                                            
  1016. // -1, ce se v vodniku ne odbije totalno REFRACTED
  1017. //  2, enter the light guide, bin 2 of hfate EXIT                                    
  1018. // -2, ce se ne odbije zaradi koncnega R stranic - no total reflection REFRACTED                            
  1019. // -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev BACK_REFLECTED            
  1020. // +4, ce se absorbira v materialu ABSORBED
  1021. {
  1022.   if (dbg) printf("--- Detector::Propagate ---\n");
  1023.   //CRay *ray0 = new CRay; ray0->Set(in.GetR(), in.GetN()); ray0->SetColor(col_in);
  1024.   CRay *rayin = new CRay(in);
  1025.   rayin->SetColor(col_in);
  1026.   CRay *rayout = new CRay(in);
  1027.   rayout->SetColor(col_in);
  1028.  
  1029.   const int max_n_points = guide->GetMAXODB() + 2;
  1030.   TVector3 pointsPlate[max_n_points];
  1031.   //TVector3 intersection;
  1032.   Fate fatePlate;
  1033.   int nPointsPlate;
  1034.   TPolyLine3D *line3d = new TPolyLine3D(2);
  1035.   line3d->SetLineWidth(1);
  1036.   line3d->SetLineColor(4);
  1037.  
  1038.   // Draw the plate and propagate the ray through
  1039.   // check if the ray should be reflected??
  1040.  
  1041.   if(_plateOn) {
  1042.  
  1043.       fatePlate = plate->propagateRay(*rayin, rayout, &nPointsPlate, pointsPlate);
  1044.       if(draw) rayin->DrawS(center.x()- _plateWidth, -10.0);
  1045.       if(draw) {
  1046.           if(fatePlate == missed) {
  1047.               rayout->SetColor(col_in);
  1048.               rayout->DrawS(center.x() - _plateWidth, -10.0);
  1049.           }
  1050.           else if(fatePlate == backreflected){
  1051.               if (dbg) printf("Backreflected at plate!\n");
  1052.           }
  1053.           else {
  1054.               int p_i;
  1055.               for(p_i = 0; p_i < nPointsPlate-1; p_i++) {
  1056.                   line3d->SetPoint(0, pointsPlate[p_i].x(), pointsPlate[p_i].y(), pointsPlate[p_i].z());
  1057.                   line3d->SetPoint(1, pointsPlate[p_i+1].x(), pointsPlate[p_i+1].y(), pointsPlate[p_i+1].z());
  1058.                   line3d->DrawClone();
  1059.               }
  1060.               rayout->DrawS(pointsPlate[p_i].x(), -0.1);
  1061.               if(fatePlate == noreflection) { // lost on plate side
  1062.                   rayout->SetColor(col_out);
  1063.                   rayout->DrawS(pointsPlate[p_i].x(), 10.0);
  1064.               }
  1065.           }
  1066.       }
  1067.  
  1068.       if(! (fatePlate == hitExit or fatePlate == refracted) ) {
  1069.           guide->GetHFate()->Fill(rays);
  1070.           if (dbg)printf("CDetector::propagate Simulated ray missed the entry surface!\n");
  1071.           if (fatePlate == backreflected)
  1072.             guide->GetHFate()->Fill(fatePlate); // reflected back
  1073.           else
  1074.             guide->GetHFate()->Fill(noreflection); //lost on plate side
  1075.           return fatePlate;
  1076.       }
  1077.  
  1078.       //Ray hits light guide
  1079.       histoPlate->Fill(pointsPlate[0].y(), pointsPlate[0].z()); // entry point
  1080.  
  1081.   }
  1082.   else {
  1083.       //rayout = rayin;
  1084.       if(draw) rayout->DrawS(center.x(), -10.0);
  1085.   }
  1086.  
  1087.   // If the ray is not reflected in the plate
  1088.   // Draw the light guide and propagate the ray through
  1089.  
  1090.   //const int max_n_points = guide->GetMAXODB() + 2;
  1091.   TVector3 points[max_n_points];
  1092.   TVector3 presecisce;
  1093.  
  1094.   int n_points;
  1095.   int fate_glass;
  1096.   CRay *ray0 = new CRay(*rayout);
  1097.   // delete rayout; -> creates dangling reference when tries to delete ray0!
  1098.   //delete rayin; -> delete rayout!
  1099.   CRay *ray1 = new CRay;
  1100.  
  1101.   fate = guide->PropagateRay(*ray0, ray1, &n_points, points);
  1102.   if (dbg) {
  1103.       if (fate == backreflected) printf("DETECTOR::backreflected\n");
  1104.   }
  1105.  
  1106.   line3d->SetLineColor(col_lg);
  1107.   int p_i;
  1108.   if(guide_on) {
  1109.       if(draw) {
  1110.           if(fate == missed) {
  1111.               if (dbg) printf("Detector: fate=missed\n");
  1112.               TVector3 r = ray1->GetR();
  1113.               TVector3 n = ray1->GetN();
  1114.               ray1->Set(r,n);
  1115.               ray1->DrawS(center.x(), 10.0);
  1116.           } else {
  1117.               for(p_i = 0; p_i < n_points-1; p_i++) {
  1118.                   line3d->SetPoint(0, points[p_i].x(), points[p_i].y(), points[p_i].z());
  1119.                   line3d->SetPoint(1, points[p_i+1].x(), points[p_i+1].y(), points[p_i+1].z());
  1120.                   line3d->DrawClone();
  1121.               }
  1122.               if(fate != noreflection) {
  1123.                   if (dbg) printf("Detector: fate != noreflection, fate = %d\n", (int)fate);
  1124.                   if(glass_on) {/*if(fate == 1)*/ ray1->Draw(points[p_i].x(), center.x() + guide->getD() + glass_d);}
  1125.                   else {
  1126.                       ray1->SetColor(col_out);
  1127.                       ray1->DrawS(points[p_i].x(), 10.0);
  1128.                   }
  1129.               }
  1130.           }
  1131.       }
  1132.  
  1133.  
  1134.       if(! (fate == hitExit or fate == refracted) ) {
  1135.           if (dbg) printf("Detector: fate != hit, refracted\n");
  1136.           *out = *ray1;
  1137.           delete ray0;
  1138.           delete ray1;
  1139.           delete rayout;
  1140.           delete rayin;
  1141.           return fate;
  1142.       }
  1143.   } else {
  1144.       if (dbg) printf("Detector: fate = hit or refracted");
  1145.       ray1 = ray0;
  1146.       if(draw) {
  1147.           //double epoxy = parameters->getGlassD();
  1148.           if(glass_on) ray1->Draw(center.x(), center.x() + glass_d);
  1149.           else ray1->DrawS(center.x(), 10.0);
  1150.       }
  1151.   }
  1152.  
  1153.   fate = missed; // zgresil aktivno povrsino
  1154.   if(glass_on) {
  1155.       *ray0 = *ray1;
  1156.       ray1->SetColor(col_rgla);
  1157.       fate_glass = glass->PropagateRay(*ray0, ray1, &presecisce);
  1158.       if(fate_glass == REFRACTION) {
  1159.           hglass->Fill(presecisce.y(), presecisce.z());
  1160.           if(draw) ray1->DrawS(presecisce.x(), 10.0);
  1161.           //if(active->TestIntersection(&presecisce, *ray1)) {
  1162.           //fate = hitExit;
  1163.           //hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1164.           //hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
  1165.           //}
  1166.           //if(detector->TestIntersection(&presecisce, *ray1))
  1167.           //hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1168.           //} else if(fate_glass == REFLECTION) {
  1169.           else
  1170.             if(draw) ray1->DrawS(presecisce.x(), 10.0);
  1171.       }
  1172.   }
  1173.  
  1174.   // Main test: ray and SiPM surface
  1175.   if(active->TestIntersection(&presecisce, *ray1)) {
  1176.       fate = hitExit;
  1177.       hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1178.       hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
  1179.   }
  1180.   // If it is on the same plane as SiPM
  1181.   if(detector->TestIntersection(&presecisce, *ray1))
  1182.     hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
  1183.   //}
  1184.   //} else {
  1185.   //if(draw) ray1->Draw(presecisce.x(), center.x()+d+window_d);
  1186.   //}
  1187.  
  1188.   *out = *ray1;
  1189.   delete ray0;
  1190.   delete ray1;
  1191.   delete rayout;
  1192.   delete rayin;
  1193.   return fate;
  1194. }
  1195. //-----------------------------------------------------------------------------
  1196. void CDetector::Draw(int width)
  1197. {
  1198.   if(guide_on) {
  1199.       if( TMath::Abs(guide->getN1()-guide->getN2()) < MARGIN ) {
  1200.           if(_plateOn) plate->drawSkel(col_LG, width);
  1201.           guide->DrawSkel(col_LG, width);
  1202.       }
  1203.       else {
  1204.           if(_plateOn) plate->draw(4, width);
  1205.           guide->Draw(col_LG, width);
  1206.       }
  1207.   }
  1208.  
  1209.   if(glass_on) glass_circle->Draw(col_glass, width);
  1210.   //window_circle->Draw(col_glass, width);
  1211.   active->Draw(col_active, width);
  1212. }
  1213. //=================================================================================
  1214.  
  1215. Plate::Plate(DetectorParameters& parameters)
  1216. {
  1217.   TVector3 center = CENTER;
  1218.   const double b = parameters.getB();
  1219.   const double n1 = parameters.getN1();
  1220.   const double n2 = parameters.getN2();
  1221.   const double t = b/2.;
  1222.   const double plateWidth = parameters.getPlateWidth();
  1223.   center.SetX( CENTER.X() - plateWidth );
  1224.  
  1225.   plate_edge[0].SetXYZ(0.0, t,-t);
  1226.   plate_edge[1].SetXYZ(0.0, t, t);
  1227.   plate_edge[2].SetXYZ(0.0,-t, t);
  1228.   plate_edge[3].SetXYZ(0.0,-t,-t);
  1229.   plate_edge[4].SetXYZ(plateWidth, t,-t);
  1230.   plate_edge[5].SetXYZ(plateWidth, t, t);
  1231.   plate_edge[6].SetXYZ(plateWidth,-t, t);
  1232.   plate_edge[7].SetXYZ(plateWidth,-t,-t);
  1233.  
  1234.   for(int i = 0; i<8; i++) plate_edge[i] += center;
  1235.  
  1236.   sides[0] = new CSurface(SURF_REFRA, plate_edge, n1, n2, c_reflectivity);
  1237.   sides[0]->FlipN();
  1238.  
  1239.   sides[1] = new CSurface(SURF_REFRA, plate_edge[3], plate_edge[2], plate_edge[6], plate_edge[7], n2, n2, c_reflectivity);
  1240.   sides[2] = new CSurface(SURF_REFRA, plate_edge[2], plate_edge[1], plate_edge[5], plate_edge[6], n2, n2, c_reflectivity);
  1241.   sides[3] = new CSurface(SURF_REFRA, plate_edge[1], plate_edge[0], plate_edge[4], plate_edge[5], n2, n2, c_reflectivity);
  1242.   sides[4] = new CSurface(SURF_REFRA, plate_edge[0], plate_edge[3], plate_edge[7], plate_edge[4], n2, n2, c_reflectivity);
  1243.  
  1244.   sides[5] = new CSurface(SURF_REFRA, &plate_edge[4], n2, n2, c_reflectivity);
  1245.   sides[5]->FlipN();
  1246.  
  1247.   for(int i=0; i<6; i++) sides[i]->SetFresnel(1);
  1248. }
  1249.  
  1250. void Plate::draw(int color, int width)
  1251. {
  1252.   for(int i = 0; i<6; i++) sides[i]->Draw(color, width);
  1253. }
  1254.  
  1255. void Plate::drawSkel(int color, int width)
  1256. {
  1257.   TPolyLine3D line3d(2);
  1258.   line3d.SetLineWidth(width);
  1259.   line3d.SetLineColor(color);
  1260.  
  1261.   for(int i=0; i<4; i++) {
  1262.       line3d.SetPoint(0, plate_edge[i+0].x(), plate_edge[i+0].y(), plate_edge[i+0].z());
  1263.       line3d.SetPoint(1, plate_edge[i+4].x(), plate_edge[i+4].y(), plate_edge[i+4].z());
  1264.       line3d.DrawClone();
  1265.   }
  1266. }
  1267.  
  1268. Fate Plate::propagateRay(CRay in, CRay *out, int *n_points, TVector3 *points)
  1269. {
  1270.   CRay ray0;
  1271.   CRay ray1;
  1272.   TVector3 vec0, vec1;
  1273.   Fate fate = enter;
  1274.   int inters_i = 0;
  1275.  
  1276.   ray0 = in;
  1277.   int n_odb = 0;
  1278.   int last_hit = 0;
  1279.   int propagation = 0;
  1280.  
  1281.   int result = sides[0]->PropagateRay(ray0, &ray1, &vec1);
  1282.   if( !result ) {
  1283.       // ce -NI- presecisca z vstopno
  1284.       fate = missed;
  1285.   } else if(result == REFLECTION) {
  1286.       if (dbg) printf("PLATE: reflected\n");
  1287.       fate = backreflected;
  1288.   } else {
  1289.       points[0] = ray1.GetR();
  1290.       //hfate->Fill(enter);
  1291.       //hin->Fill(vec1.y(), vec1.z());
  1292.       while (n_odb++ < MAX_REFLECTIONS) {
  1293.           ray0 = ray1;
  1294.           vec0 = vec1;
  1295.           propagation = 11;
  1296.           for(inters_i=0; inters_i<6; inters_i++) {
  1297.               if( inters_i != last_hit) {
  1298.                   if( sides[inters_i]->TestIntersection(&vec1, ray1) ) break;
  1299.               }
  1300.           }
  1301.           points[n_odb] = vec1;
  1302.           if(inters_i == 0) {
  1303.               fate = backreflected;
  1304.               break;} // backreflection
  1305.  
  1306.           propagation = sides[inters_i]->PropagateRay(ray0, &ray1, &vec1);
  1307.           if(inters_i == 5) { // successfull exit
  1308.               fate = hitExit;
  1309.               //hout->Fill(vec1.y(), vec1.z());
  1310.               //hnodb_exit->Fill(n_odb-1);
  1311.               n_odb++;
  1312.               points[n_odb] = vec1;
  1313.               ray0 = ray1;
  1314.               break;
  1315.           }
  1316.           if(propagation == 1) {
  1317.               fate = noreflection; //at side
  1318.               n_odb++;
  1319.               points[n_odb] = vec1;
  1320.               ray0 = ray1;
  1321.               break;} // no total reflection when should be
  1322.  
  1323.           if(propagation == -2) {
  1324.               fate = noreflection;
  1325.               break;
  1326.           } // absorption due to finite reflectivity
  1327.  
  1328.           last_hit = inters_i;
  1329.       }
  1330.   }
  1331.  
  1332.   *n_points = n_odb+1;
  1333.   *out = ray0;
  1334.   return fate;
  1335. };
  1336. //=============================================================================================================================== <<<<<<<<
  1337.  
  1338.  
  1339.