#include "include/guide.h"
#include <iostream>
// vector output shortcut
void printv(TVector3 v)
{
printf("(x,y,z) = (%.4lf, %.4lf, %.4lf)\n", v.x(), v.y(), v.z());
}
// TVector3::Rotate does not seem accurate enough
TVector3 rotatey(TVector3 v, double theta)
{
return TVector3(v.x() * TMath::Cos(theta) + v.z() * TMath::Sin(theta),
v.y(),
-v.x() * TMath::Sin(theta) + v.z() * TMath::Cos(theta));
}
// another shortcut not found in TMath
int sign(double in)
{
if(in >= 0.0) return 1;
else return -1;
}
//=================================================================================
//-----------------------------------------------------------------------------
void CRay::Set(TVector3 r0, TVector3 n0)
{
r = r0; n = n0.Unit();
}
//-----------------------------------------------------------------------------
//void CRay::Set(double x0, double y0, double z0, double l0, double m0, double n0)
//{
//r.SetXYZ(x0, y0, z0);
//n.SetXYZ(l0, m0, n0); n = n.Unit();
//}
//-----------------------------------------------------------------------------
/*
CRay& CRay::operator = (const CRay& p)
{
r.SetXYZ(p.GetR().x(), p.GetR().y(), p.GetR().z());
//this->r.SetXYZ(p.x(), p.y(), p.z());
n.SetXYZ(p.GetN().x(), p.GetN().y(), p.GetN().z());
return *this;
} */
//-----------------------------------------------------------------------------
void CRay::Print()
{
printf("---> CRay::Print() <---\n");
printf("(x,y,z)=(%.2lf, %.2lf, %.2lf); (l,m,n)=(%.2lf, %.2lf, %.2lf)\n",
r.x(), r.y(), r.z(), n.x(), n.y(), n.z());
}
//-----------------------------------------------------------------------------
void CRay::Draw()
{
double t = 50.0;
TPolyLine3D *line3d = new TPolyLine3D(2);
//line3d->SetPoint(0, r.x() - t*n.x(), r.y() - t*n.y(), r.z() - t*n.z());
line3d->SetPoint(0, r.x(), r.y(), r.z());
line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z());
line3d->SetLineWidth(1);
line3d->SetLineColor(color);
line3d->Draw();
}
//-----------------------------------------------------------------------------
void CRay::Draw(double x_from, double x_to)
{
double A1, A2;
TPolyLine3D *line3d = new TPolyLine3D(2);
if(n.x() < MARGIN) {
A1 = A2 = 0.0;
} else {
A1 = (x_from - r.x())/n.x();
A2 = (x_to - r.x())/n.x();
}
line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z());
line3d->SetPoint(1, x_to, A2*n.y()+r.y(), A2*n.z()+r.z());
line3d->SetLineWidth(1);
line3d->SetLineColor(color);
line3d->Draw();
}
//-----------------------------------------------------------------------------
void CRay::DrawS(double x_from, double t)
{
double A1;
TPolyLine3D *line3d = new TPolyLine3D(2);
if(n.x() < MARGIN)
A1 = 0.0;
else
A1 = (x_from - r.x())/n.x();
line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z());
line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z());
line3d->SetLineWidth(1);
line3d->SetLineColor(color);
line3d->Draw();
}
//=================================================================================
//=================================================================================
CPlane4::CPlane4() :
n(TVector3(1.0, 0.0, 0.0)),
A(0),
B(0),
C(0),
D(0)
{ r[0] = TVector3(0.0,-1.0,-1.0);
r[1] = TVector3(0.0,-1.0, 1.0);
r[2] = TVector3(0.0, 1.0, 1.0);
r[3] = TVector3(0.0, 1.0,-1.0);
for(int i=0;i<4;i++) edge[i] = TVector3(0,0,0);
for(int i=0;i<4;i++) angle_r[i] = 0;
};
//-----------------------------------------------------------------------------
CPlane4::CPlane4(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
{
//Set(r1, r2, r3, r4);
//}
//-----------------------------------------------------------------------------
// za izracun parametrov ravnine je en vektor prevec, vendar tega
// rabim kot zadnji vogal poligona
//void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
//{
double x1,y1,z1, x2,y2,z2, x3,y3,z3;
x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
n.SetXYZ(A, B, C);
n = n.Unit();
for(int i=0;i<4;i++)
edge[i] = r[i-3 ? i+1 : 0] - r[i];
for(int i=0;i<4;i++)
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
};
void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
{
double x1,y1,z1, x2,y2,z2, x3,y3,z3;
x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
n.SetXYZ(A, B, C);
n = n.Unit();
for(int i=0;i<4;i++)
edge[i] = r[i-3 ? i+1 : 0] - r[i];
for(int i=0;i<4;i++)
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
};
CPlane4::CPlane4(TVector3 *vr)
{
double x1,y1,z1, x2,y2,z2, x3,y3,z3;
x1 = vr[0].x(); y1 = vr[0].y(); z1 = vr[0].z();
x2 = vr[1].x(); y2 = vr[1].y(); z2 = vr[1].z();
x3 = vr[2].x(); y3 = vr[2].y(); z3 = vr[2].z();
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
r[0] = vr[0]; r[1] = vr[1]; r[2] = vr[2]; r[3] = vr[3];
n.SetXYZ(A, B, C);
n = n.Unit();
for(int i=0;i<4;i++)
edge[i] = r[i-3 ? i+1 : 0] - r[i];
for(int i=0;i<4;i++)
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
};
//-----------------------------------------------------------------------------
// posce presecisce !neskoncne! ravnine s premico (class CRay)
// ce najde presecisce vrne 1
int CPlane4::GetIntersection(TVector3 *vec, CRay ray)
{
TVector3 N; //nenormirani vektor (A,B,C)
double num, den; //stevec, imenovalec
double t;
TVector3 tmp;
N.SetXYZ(A,B,C);
num = N*ray.GetR() + D;
den = N*ray.GetN();
if (dbg) printf("t = %6.3lf / %6.3lf = %6.3lf\n", num, den, num/den);
//if(den == 0)
if(TMath::Abs(den) < MARGIN) {
//if(num == 0)
if(TMath::Abs(num) < MARGIN) {
if (dbg) printf("The ray is on the surface!\n");
return 0; //return 2; // premica lezi na ravnini
}
else {
if (dbg) printf("The ray is parallel to the surface!\n");
return 0; // ni presecisca
}
}
t = num / den;
tmp = ray.GetR();
tmp -= t*ray.GetN();
*vec = tmp;
return 1;
}
//-----------------------------------------------------------------------------
// ali je vektor vec, ki lezi na ravnini skupaj z e1 in e2, med njima
// angle_r je kot med e1 in e2, vsi vektorji imajo skupno izhodisce
int CPlane4::IsInTri(TVector3 vec, TVector3 e1, TVector3 e2, double angle)
{
double angle_ve1, angle_ve2;
if(dbg) printf("--- CPlane4::IsInTri ---\n");
angle_ve1 = TMath::ACos(/*TMath::Abs*/( (e1.Unit()) * (vec.Unit()) ));
angle_ve2 = TMath::ACos(/*TMath::Abs*/( (e2.Unit()) * (vec.Unit()) ));
if(dbg)
{
printf("angle_ve1 = %lf\n", angle_ve1*DEGREE);
printf("angle_ve2 = %lf\n", angle_ve2*DEGREE);
printf("angle_sum = %lf\n", (angle_ve1 + angle_ve2)*DEGREE);
printf(" angle_r = %lf\n", angle*DEGREE);
}
bool difference = (MARGIN < TMath::Abs(angle - (angle_ve1 + angle_ve2)));
if (dbg) printf(" MARGIN < Difference = %d\n", difference);
return (int) !difference;
}
//-----------------------------------------------------------------------------
// ali je vektor vec, ki lezi na ravnini!, znotraj meja, ki jih definirajo
// strije vogali te ravnine r[i]
int CPlane4::IsVectorIn(TVector3 vec)
{
int status;
if(dbg) printf("--- CPlane4::IsVectorIn ---\n");
for(int i=0;i<3;i++)
{
status = IsInTri(vec - r[i], edge[i], -edge[i ? i-1 : 3], angle_r[i]);
if(dbg) printf(" [%d] vec is %s\n", i, status ? "inside" : "outside");
if(!status) return 0;
}
return 1;
}
//-----------------------------------------------------------------------------
int CPlane4::TestIntersection(CRay in)
{
TVector3 tmp;
if( GetIntersection(&tmp, in) )
if( IsVectorIn(tmp) )
return 1;
return 0;
}
//-----------------------------------------------------------------------------
int CPlane4::TestIntersection(TVector3 *vec, CRay in)
{
TVector3 tmp;
if( GetIntersection(&tmp, in) )
if( IsVectorIn(tmp) ) {
*vec = tmp;
return 1;
}
return 0;
}
//-----------------------------------------------------------------------------
void CPlane4::Print()
{
printf("--- CPlane4::Print() ---\n");
printf(" r=(%.2lf, %.2lf, %.2lf); n=(%.2lf, %.2lf, %.2lf); ",
r[0].x(), r[0].y(), r[0].z(), n.x(), n.y(), n.z());
printf( "(A,B,C,D)=(%.2lf, %.2lf, %.2lf, %.2lf) \n", A, B, C, D);
for(int i=0;i<4;i++) printf(" edge[%d] = (%lf, %lf, %lf)\n", i, edge[i].x(), edge[i].y(), edge[i].z());
for(int i=0;i<4;i++) printf(" angle[%d] = %lf\n", i, angle_r[i]*DEGREE);
}
//-----------------------------------------------------------------------------
void CPlane4::Draw(int color, int width)
{
TPolyLine3D *line3d = new TPolyLine3D(5);
for(int i=0;i<4;i++) line3d->SetPoint(i, r[i].x(), r[i].y(), r[i].z());
line3d->SetPoint(4, r[0].x(), r[0].y(), r[0].z());
line3d->SetLineWidth(width); line3d->SetLineColor(color);
line3d->Draw();
}
//=================================================================================
//=================================================================================
CSurface::CSurface(int type0):
type(type0)
{
TVector3 vr[4];
TDatime now;
vr[0].SetXYZ(0.0,-1.0,-1.0);
vr[1].SetXYZ(0.0,-1.0, 1.0);
vr[2].SetXYZ(0.0, 1.0, 1.0);
vr[3].SetXYZ(0.0, 1.0,-1.0);
//CPlane4::Set(vr);
SetIndex(1.0, 1.5);
reflection = c_reflectivity;
rand.SetSeed(now.Get());
SetFresnel();
}
//-----------------------------------------------------------------------------
CSurface::CSurface(int type0, TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4, double n10, double n20, double reflectivity)
{
TDatime now;
type = type0; CPlane4::Set(r1, r2, r3, r4);
SetIndex(n10, n20);
reflection = reflectivity;
rand.SetSeed(now.Get());
SetFresnel();
}
//-----------------------------------------------------------------------------
CSurface::CSurface(int type0, TVector3 *vr, double n10, double n20, double reflectivity)
{
TDatime now;
type = type0; CPlane4::Set(vr);
SetIndex(n10, n20);
reflection = reflectivity;
rand.SetSeed(now.Get());
SetFresnel();
}
//-----------------------------------------------------------------------------
void CSurface::SetIndex(double n10, double n20)
{
n1 = n10; n2 = n20; n1_n2 = n1/n2;
if(n1 > n2)
cosTtotal = TMath::Sqrt( 1 - TMath::Power(n2/n1, 2) );
else
cosTtotal = 0.0;
}
//-----------------------------------------------------------------------------
// sprejme zarek, vrne uklonjen/odbit zarek in presecisce
// vrne 0 ce ni presecisca; 1 ce se je lomil
// 2 ce se je odbil; -2 ce se je absorbiral
int CSurface::PropagateRay(CRay in, CRay *out, TVector3 *intersection)
{
if (dbg) printf("--- CSurface::PropagateRay ---\n");
double cosTi, cosTt, p_ref;
TVector3 intersect, transmit;
if( !(GetIntersection(&intersect, in) == 1) )
return 0;
*intersection = intersect;
if( !IsVectorIn(intersect) )
return 0;
// --------------- Fresnel ----------------------------------------------------
// R_f = a_te * R_te + a_tm * R_tm
// e - electrical/perependicular
// m - magnetic polarization/parallel
double r_te=0;
double r_tm=0;
double R_te=0; // s reflection coefficient
double R_tm=0; // p reflection coefficient
double R_f = 0.0;
double a_te = 0.0; // s-wave amplitude, cos Alpha
double a_tm = 0.0; // p-wave amplitude, sin Alpha
TVector3 v_te; // unit s-polarization vector
TVector3 v_tm; // unit p-polarization vector
TVector3 v_tm_t;// transmited polarization parallel with the plane of incidence
TVector3 pol_t = in.GetP(); // transmited polarization
int sign_n; // sign of normal direction vs. inbound ray
double cosTN; // debug
if(fresnel) {
// p-polarization unit vector v_te
// is in the plane orthogonal to the plane of incidence
// defined as the plane spanned by
// incident surface vector n and wave vector k
// k in this notation is in.GetN()
v_te = n.Cross(in.GetN());
v_te = v_te.Unit();
v_tm = -v_te.Cross(in.GetN());
v_tm = v_tm.Unit();
if(dbg) {
printf(" v_te = "); printv(v_te);
printf(" v_tm = "); printv(v_tm);
}
double cosAf = v_te * in.GetP();
if(dbg) printf(" cosAf = %lf (Af = %lf)\n", cosAf, TMath::ACos(cosAf)*DEGREE);
a_te = cosAf;
a_tm = TMath::Sqrt(1 - cosAf*cosAf);
if(dbg) printf(" a_te = %lf, a_tm = %lf\n", a_te, a_tm);
}
// ----------------------------------------------------------------------------
if(type == SURF_TOTAL) type = SURF_REFRA;
switch(type){
// ----------------------------------------------------------------------------
// --------------- refraction from n1 to n2 -----------------------------------
// ----------------------------------------------------------------------------
case SURF_REFRA:
cosTi = in.GetN() * n;
if(dbg) printf(" cosTi = %lf (Ti = %lf)\n", cosTi, TMath::ACos(cosTi)*DEGREE);
sign_n = -sign(cosTi);
if(dbg) printf(" sign_n = %d\n", sign_n);
cosTi = TMath::Abs(cosTi);
// Check if there can be total reflection: n1 > n2
if(N1_N2(-sign_n) < 1.0)
cosTtotal = TMath::Sqrt( 1 - TMath::Power(N1_N2(-sign_n), 2) );
else
cosTtotal = 0.0;
if(dbg) printf(" cosTtotal = %lf (Ttotal = %lf)\n", cosTtotal, TMath::ACos(cosTtotal)*DEGREE);
// reflection dependance on polarization missing
// reflection hardcoded to 0.96
p_ref = rand.Uniform(0.0, 1.0);
if (dbg) printf(" reflection probability = %f\n", p_ref);
// If n1>n2 and theta>thetaCritical, total reflection
if( (cosTi < cosTtotal) && (p_ref < reflection) ) { // totalni odboj z verjetnostjo "reflection"
if(dbg) printf(" TOTAL\n");
transmit = in.GetN() + sign_n*2*cosTi*n;
if(dbg) {
cosTN = TMath::Abs(transmit.Unit() * n);
printf(" cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
}
out->Set(intersect, transmit);
pol_t = -in.GetP() + sign_n*2*cosTi*n;
out->SetPolarization(pol_t);
return REFLECTION;
} else {
// reflection or refraction according to Fresnel equations
if(dbg) printf(" REFRACTION\n");
if(dbg) printf(" N1_N2(sign_n) = %lf\n", N1_N2(sign_n));
cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
if(dbg) printf(" cosTt = %lf (Tt = %lf) \n", cosTt, TMath::ACos(cosTt)*DEGREE);
transmit = N1_N2(sign_n)*in.GetN() + sign_n*(N1_N2(sign_n)*cosTi - cosTt)*n;
if(dbg) {printf(" transmit.Unit() = "); printv(transmit.Unit());}
if(dbg) {
cosTN = transmit.Unit() * n;
printf(" cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
}
//if(cosTi<=cosTtotal) cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
//if(fresnel) {
r_te = (n1*cosTi - n2*cosTt)/(n1*cosTi + n2*cosTt); // transverse
r_tm = (n2*cosTi - n1*cosTt)/(n1*cosTt + n2*cosTi); // paralel
if(dbg) printf(" r_te = %lf, r_tm = %lf\n", r_te, r_tm);
// transmited polarization
v_tm_t = -v_te.Cross(transmit);
v_tm_t = v_tm_t.Unit();
pol_t = a_te * (1.0 - TMath::Abs(r_te)) * v_te + a_tm * (1.0 - TMath::Abs(r_tm)) * v_tm_t;
if(dbg) {
printf(" v_tm_t = "); printv(v_tm_t);
printf(" pol_t = "); printv(pol_t);
}
// Fresnel coefficients
R_te = TMath::Power(r_te, 2);
R_tm = TMath::Power(r_tm, 2);
R_f = a_te*a_te*R_te + a_tm*a_tm*R_tm;
if (dbg) printf(" R_te = %lf, R_tm = %lf, R_f = %lf\n", R_te, R_tm, R_f);
}
if(p_ref >= R_f) { // se lomi
if (dbg) printf(" SURFACE REFRACTED. Return.\n");
out->Set(intersect, transmit);
out->SetPolarization(pol_t);
return REFRACTION;
} else { // se odbije
if (dbg) printf(" SURFACE REFLECTED. p_ref=%f, R_f=%f\n", p_ref, R_f);
transmit = in.GetN() + sign_n*2*cosTi*n;
out->Set(intersect, transmit);
pol_t = -in.GetP() + sign_n*2*cosTi*n;
out->SetPolarization(pol_t);
return REFLECTION;
}
//}
break;
// ----------------------------------------------------------------------------
// --------------- reflection at "reflection" probability ---------------------
// ----------------------------------------------------------------------------
case SURF_REFLE:
p_ref = rand.Uniform(0.0, 1.0);
if(p_ref < reflection) { // se odbije
cosTi = in.GetN() * n;
transmit = in.GetN() - 2*cosTi*n;
out->Set(intersect, transmit);
return REFLECTION; //sdhfvjhsdbfjhsdbcvjhsb
} else { // se ne odbije
transmit = in.GetN();
out->Set(intersect, transmit);
return ABSORBED;
}
break;
// total reflection from n1 to n2 with R probbability
case SURF_IMPER:
p_ref = rand.Uniform(0.0, 1.0);
if(p_ref < reflection) { // se odbije
cosTi = in.GetN() * n;
if(TMath::Abs(cosTi) < cosTtotal) { // totalni odboj
transmit = in.GetN() - 2*cosTi*n;
out->Set(intersect, transmit);
} else { // ni tot. odboja
transmit = in.GetN();
out->Set(intersect, transmit);
return ABSORBED;
}
} else { // se ne odbije
transmit = in.GetN();
out->Set(intersect, transmit);
return ABSORBED;
}
break;
default:
*out = in;
break;
}
return REFRACTION;
}
//=================================================================================
//=================================================================================
Guide::Guide(TVector3 center0, DetectorParameters ¶meters)
{
double t;
TDatime now;
rand.SetSeed(now.Get());
center = center0;
double b = parameters.getB();
double a = parameters.getA();
_d = parameters.getD();
n1 = parameters.getN1();
n2 = parameters.getN2();
// if PlateOn, then n0 = n3 (optical grease), else = n1 (air)
//double n0 = (parameters.getPlateOn() ? parameters.getN3(): n1);
double n0 = (parameters.getPlateOn() ? n2 : n1);
n3 = parameters.getN3();
_r = c_reflectivity;
int fresnel = parameters.getFresnel();
// light guide edges
t = b/2.0;
vodnik_edge[0].SetXYZ(0.0, t,-t);
vodnik_edge[1].SetXYZ(0.0, t, t);
vodnik_edge[2].SetXYZ(0.0,-t, t);
vodnik_edge[3].SetXYZ(0.0,-t,-t);
t = a/2.0;
vodnik_edge[4].SetXYZ(_d, t,-t);
vodnik_edge[5].SetXYZ(_d, t, t);
vodnik_edge[6].SetXYZ(_d,-t, t);
vodnik_edge[7].SetXYZ(_d,-t,-t);
for(int i = 0; i<8; i++) vodnik_edge[i] += center;
// light guide surfaces
s_side[0] = new CSurface(SURF_REFRA, vodnik_edge, n0, n2, _r);
s_side[0]->FlipN();
s_side[1] = new CSurface(SURF_REFRA, vodnik_edge[3], vodnik_edge[2], vodnik_edge[6], vodnik_edge[7], n2, n1, _r);
s_side[2] = new CSurface(SURF_REFRA, vodnik_edge[2], vodnik_edge[1], vodnik_edge[5], vodnik_edge[6], n2, n1, _r);
s_side[3] = new CSurface(SURF_REFRA, vodnik_edge[1], vodnik_edge[0], vodnik_edge[4], vodnik_edge[5], n2, n1, _r);
s_side[4] = new CSurface(SURF_REFRA, vodnik_edge[0], vodnik_edge[3], vodnik_edge[7], vodnik_edge[4], n2, n1, _r);
s_side[5] = new CSurface(SURF_REFRA, &vodnik_edge[4], n2, n3, _r); // n3 - ref ind at the exit, grease, air, epoxy
s_side[5]->FlipN();
if(fresnel) for(int i=0; i<6; i++) s_side[i]->SetFresnel(1);
// statistics histograms
hfate = (TH1F*)gROOT->FindObject("hfate"); if(hfate) delete hfate;
hfate = new TH1F("hfate", "Ray fate", 8, -3.5, 4.5);
(hfate->GetXaxis())->SetBinLabel(1, "Back Ref");
(hfate->GetXaxis())->SetBinLabel(2, "No Ref");
(hfate->GetXaxis())->SetBinLabel(3, "Refrac");
(hfate->GetXaxis())->SetBinLabel(4, "LG Miss");
(hfate->GetXaxis())->SetBinLabel(5, "Exit");
(hfate->GetXaxis())->SetBinLabel(6, "Enter");
(hfate->GetXaxis())->SetBinLabel(7, "Rays");
(hfate->GetXaxis())->SetBinLabel(8, "Absorb");
hnodb_all = (TH1F*)gROOT->FindObject("hnodb_all"); if(hnodb_all) delete hnodb_all;
hnodb_all = new TH1F("hnodb_all", "N reflected", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
hnodb_exit = (TH1F*)gROOT->FindObject("hnodb_exit"); if(hnodb_exit) delete hnodb_exit;
hnodb_exit = new TH1F("hnodb_exit", "N reflected and exit", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
int nBins = nch + 1;
hin = (TH2F*)gROOT->FindObject("hin"); if(hin) delete hin;
hin = new TH2F("hin", "Guide entrance window", nBins, -b/2.0, +b/2.0, nBins, -b/2.0, +b/2.0);
hout = (TH2F*)gROOT->FindObject("hout"); if(hout) delete hout;
hout = new TH2F("hout", "Guide exit window", nBins, -a/2.0, +a/2.0, nBins, -a/2.0, +a/2.0);
absorption = 0;
A = 0;
}
//-----------------------------------------------------------------------------
// Sledi zarku skozi vodnik. Vrne:
// 0, ce zgresi vstopno ploskev
// 1, ce zadane izstopno ploskev
// -1, ce se v vodniku ne odbije totalno
// 2, enter the light guide, bin 2 of hfate = refraction
// -2, ce se ne odbije zaradi koncnega R stranic
// -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev
// +4, ce se absorbira v materialu
Fate Guide::PropagateRay(CRay in, CRay *out, int *n_points, TVector3 *points)
{
if (dbg) printf("--- GUIDE::PropagateRay ---\n");
CRay ray0;
CRay ray1;
TVector3 vec0, vec1;
int inters_i = 0;
ray0 = in;
int n_odb = 0;
int last_hit = 0;
int propagation = 0;
int result = s_side[0]->PropagateRay(ray0, &ray1, &vec1);
if( !(result) ) {
// ce -NI- presecisca z vstopno
if (dbg) printf(" GUIDE: missed the light guide\n");
fate = missed;
//hfate->Fill(0);
} else if(result == REFLECTION) {
if (dbg) printf(" REFLECTED on the entry surface!\n");
fate = backreflected;
//hfate->Fill(-3);
} else {
if (dbg) printf(" GUIDE: ray entered\n");
points[0] = ray1.GetR();
hfate->Fill(enter); // enter
hin->Fill(vec1.y(), vec1.z());
if (dbg) printf(" GUIDE: n_odb = %d\n", n_odb);
while (n_odb++ < MAX_REFLECTIONS) {
if (dbg) printf(" GUIDE: Boundary test: %d\n",n_odb);
ray0 = ray1;
vec0 = vec1;
propagation = 11;
for(inters_i=0; inters_i<6; inters_i++) {
if (dbg) printf(" GUIDE: Test intersection with surface %d \n", inters_i);
if( inters_i != last_hit) {
int testBoundary = s_side[inters_i]->TestIntersection(&vec1, ray1);
if( testBoundary ) {
if (dbg) printf(" GUIDE: ray intersects with LG surface %d\n",inters_i);
break;
}
}
}
points[n_odb] = vec1;
if(inters_i == 0) {
fate = backreflected;
//hfate->Fill(backreflected);
break;
} // backreflection
// the passage is possible, test propagation
propagation = s_side[inters_i]->PropagateRay(ray0, &ray1, &vec1);
if (dbg) printf(" GUIDE: surface = %d, propagation = %d\n", inters_i, propagation);
if(propagation == REFRACTION) {
fate = refracted;
n_odb++;
points[n_odb] = vec1;
ray0 = ray1;
break;
} // no total reflection when should be
if(propagation == ABSORBED) {
fate = noreflection;
break;
} //refraction due to finite reflectivity
if(inters_i == 5) { // successfull exit
// check on which side the vector is?
TVector3 ray = ray1.GetN();
TVector3 exitNormal = s_side[5]->GetN();
//printf("theta(ray) = %lf, theta(normal5) = %lf ", ray.Theta()*DEGREE, exitNormal.Theta()*DEGREE);
//printf("phi(ray) = %lf, phi(normal5) = %lf\n", ray.Phi()*DEGREE, exitNormal.Phi()*DEGREE);
if (dbg) printf("ray*n_5 = %lf\n", ray*exitNormal);
if (ray*exitNormal > 0) {
if (dbg) printf(" GUIDE: ray is backreflected from exit window.\n");
fate = backreflected;
n_odb++;
points[n_odb] = vec1;
ray0 = ray1;
break;
}
fate = hitExit;
hout->Fill(vec1.y(), vec1.z());
hnodb_exit->Fill(n_odb-1);
n_odb++;
points[n_odb] = vec1;
ray0 = ray1;
break;
}
last_hit = inters_i;
}
}
//--- material absorption ---
if(absorption) {
double travel = 0.0;
printf("n_odb = %d\n", n_odb); //dbg
for(int point = 0; point < n_odb-1; point++) {
travel += (points[point] - points[point+1]).Mag();
printf("travel = %lf\n", travel); //dbg
}
double T_abs = TMath::Exp(-travel/A);
printf("T_abs = %lf\n", T_abs); //dbg
double p_abs = rand.Uniform(0.0, 1.0);
printf("p_abs = %lf\n", p_abs); //dbg
if(p_abs > T_abs) fate = absorbed; // absorption
}
//--- material absorption ---
hfate->Fill(fate);
hfate->Fill(rays);
hnodb_all->Fill(n_odb-2);
*n_points = n_odb+1;
*out = ray0;
return fate;
}
//-----------------------------------------------------------------------------
void Guide::GetVFate(int *out)
{
for(int i=0;i<7;i++) out[i] = (int)hfate->GetBinContent(i+1);
}
//-----------------------------------------------------------------------------
void Guide::Draw(int color, int width)
{
for(int i = 0; i<6; i++) s_side[i]->Draw(color, width);
}
//-----------------------------------------------------------------------------
void Guide::DrawSkel(int color, int width)
{
TPolyLine3D *line3d = new TPolyLine3D(2);
line3d->SetLineWidth(width); line3d->SetLineColor(color);
for(int i=0; i<4; i++) {
line3d->SetPoint(0, vodnik_edge[i+0].x(), vodnik_edge[i+0].y(), vodnik_edge[i+0].z());
line3d->SetPoint(1, vodnik_edge[i+4].x(), vodnik_edge[i+4].y(), vodnik_edge[i+4].z());
line3d->DrawClone();
}
}
//=================================================================================
//=================================================================================
int CPlaneR::TestIntersection(TVector3 *vec, CRay ray)
{
double num, den; //stevec, imenovalec
double t;
TVector3 tmp;
if(dbg) printf("---> CPlaneR::TestIntersection <---\n");
if(dbg) {printf("c = "); printv(center); printf(" | n = "); printv(n); printf("\n");}
double D = - n*center;
num = n*ray.GetR() + D;
den = n*ray.GetN();
if(dbg) printf("D = %.4lf | num = %.4lf | den = %.4lf\n", D, num, den);
if(TMath::Abs(den) < MARGIN) {
if(TMath::Abs(num) < MARGIN)
return 0;
else
return 0;
}
t = num / den;
if(dbg) printf("t = %.4lf | ", t);
tmp = ray.GetR();
tmp -= t*ray.GetN();
*vec = tmp;
if(dbg) {printv(tmp); printf(" | Rv = %.4lf <> R = %.4lf\n", ((tmp - center).Mag()), _r);}
if( ((tmp - center).Mag()) < _r )
return 1;
else
return 0;
}
//-----------------------------------------------------------------------------
void CPlaneR::Draw(int color, int width)
{
const int NN = 32;
double phi, x, y;
TPolyLine3D *arc;
arc = new TPolyLine3D(NN+1);
arc->SetLineWidth(width);
arc->SetLineColor(color);
for(int i=0; i<=NN; i++) {
phi = i*2.0*TMath::Pi()/NN;
x = _r*TMath::Cos(phi);
y = _r*TMath::Sin(phi);
arc->SetPoint(i, center.x(), x, y);
}
arc->Draw();
}
//=================================================================================
//=================================================================================
CDetector::CDetector(TVector3 center0, DetectorParameters& parameters) :
center(center0),
glass_on(parameters.getGlassOn()),
glass_d(parameters.getGlassD()),
//x_gap(parameters.getGap().X()),
//y_gap(parameters.getGap().Y()),
//z_gap(parameters.getGap().Z()),
//glass(new CSurface),
//glass_circle(new CPlaneR),
//active(new CPlane4),
col_in(2),
col_lg(8),
col_out(4),
col_rgla(6),
col_LG(1),
col_glass(4),
col_active(7),
guide_on(parameters.getGuideOn()),
//window_R( parameters.getB() ),
//window_d(0),
guide(new Guide(center0, parameters)),
plate(new Plate(parameters)),
_plateWidth(parameters.getPlateWidth()),
_plateOn(parameters.getPlateOn()),
offsetY(parameters.getOffsetY()),
offsetZ(parameters.getOffsetZ())
{
// };
//-----------------------------------------------------------------------------
//void CDetector::Init()
//{
double d = parameters.getD();
double x_offset;
if(guide_on) x_offset = center.x();
else x_offset = center.x() - d;
//guide = new CVodnik(center, SiPM, M, d, type_in, type_side, type_out, n1, n2, n3, reflectivity, fresnel, absorption, A);
double b = parameters.getB();
//double n1 = parameters.getN1();
//double n2 = parameters.getN2();
double n3 = parameters.getN3();
double reflectivity = c_reflectivity;
double x_gap = parameters.getGap().X();
double y_gap = parameters.getGap().Y();
double z_gap = parameters.getGap().Z();
// additional glass between at top of SiPM
// example: epoxy n=1.60
double n4 = 1.60;
TVector3 plane_v[4];
int nBins = nch + 1;
double p_size = b/2.0;
plane_v[0].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap - p_size);
plane_v[1].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap + p_size);
plane_v[2].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap + p_size);
plane_v[3].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap - p_size);
glass = new CSurface(SURF_REFRA, plane_v, n3, n4, reflectivity);
glass->FlipN();
// additional circular glass between LG and SiPM
glass_circle = new CPlaneR(TVector3(x_offset+d+glass_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), b);
hglass = (TH2F*)gROOT->FindObject("hglass"); if(hglass) delete hglass;
hglass = new TH2F("hglass", "Hits glass",
nBins, y_gap - p_size, y_gap + p_size,
nBins, z_gap - p_size, z_gap + p_size);
// SiPM active surface
p_size = parameters.getActive()/2.0;
//cout<<"SiPM active length "<<detectorActive<<endl;
//p_size = 1.0/2.0;
plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
active = new CPlane4(plane_v);
hactive = (TH2F*)gROOT->FindObject("hactive"); if(hactive) delete hactive;
//hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
p_size = b/2.0;
//p_size = 2.5;
//p_size = M*0.6;
hlaser = (TH2F*)gROOT->FindObject("hlaser"); if(hlaser) delete hlaser;
hlaser = new TH2F("hlaser", ";x [mm]; y [mm]", nBins, -p_size+offsetY, p_size+offsetY, nBins, -p_size+offsetZ, p_size+offsetZ);
// collection surface in SiPM plane
p_size = 1.4*b/2.0;
plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
detector = new CPlane4(plane_v);
hdetector = (TH2F*)gROOT->FindObject("hdetector"); if(hdetector) delete hdetector;
//hdetector = new TH2F("hdetector", "Hits detector plane", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
hdetector = new TH2F("hdetector", ";x [mm]; y [mm]", nBins, y_gap-p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
/*
window_circle = new CPlaneR(TVector3(x_offset+d+window_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), window_R);
p_size = M*a;
plane_v[0].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap - p_size);
plane_v[1].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap + p_size);
plane_v[2].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap + p_size);
plane_v[3].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap - p_size);
window = new CSurface(SURF_REFRA, plane_v, n1, n2, reflectivity); window->FlipN();
hwindow = (TH2F*)gROOT->FindObject("hwindow"); if(hwindow) delete hwindow;
hwindow = new TH2F("hwindow", "Hits Window", nch, y_gap - window_R, y_gap + window_R, nch, z_gap - window_R, z_gap + window_R);
*/
p_size = b/2.0;
histoPlate = (TH2F*)gROOT->FindObject("histoPlate"); if(histoPlate) delete histoPlate;
histoPlate = new TH2F("histoPlate", "Hits on glass plate", nBins, -p_size, +p_size, nBins, -p_size, +p_size);
}
//-----------------------------------------------------------------------------
// vrne 1 ce je zadel aktvino povrsino
// vrne <1 ce jo zgresi
int CDetector::Propagate(CRay in, CRay *out, int draw)
// Sledi zarku skozi vodnik. Vrne:
// 0, ce zgresi vstopno ploskev MISSED
// 1, ce zadane izstopno ploskev HIT
// -1, ce se v vodniku ne odbije totalno REFRACTED
// 2, enter the light guide, bin 2 of hfate EXIT
// -2, ce se ne odbije zaradi koncnega R stranic - no total reflection REFRACTED
// -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev BACK_REFLECTED
// +4, ce se absorbira v materialu ABSORBED
{
if (dbg) printf("--- Detector::Propagate ---\n");
//CRay *ray0 = new CRay; ray0->Set(in.GetR(), in.GetN()); ray0->SetColor(col_in);
CRay *rayin = new CRay(in);
rayin->SetColor(col_in);
CRay *rayout = new CRay(in);
rayout->SetColor(col_in);
const int max_n_points = guide->GetMAXODB() + 2;
TVector3 pointsPlate[max_n_points];
//TVector3 intersection;
Fate fatePlate;
int nPointsPlate;
TPolyLine3D *line3d = new TPolyLine3D(2);
line3d->SetLineWidth(1);
line3d->SetLineColor(4);
// Draw the plate and propagate the ray through
// check if the ray should be reflected??
if(_plateOn) {
fatePlate = plate->propagateRay(*rayin, rayout, &nPointsPlate, pointsPlate);
if(draw) rayin->DrawS(center.x()- _plateWidth, -10.0);
if(draw) {
if(fatePlate == missed) {
rayout->SetColor(col_in);
rayout->DrawS(center.x() - _plateWidth, -10.0);
}
else if(fatePlate == backreflected){
if (dbg) printf("Backreflected at plate!\n");
}
else {
int p_i;
for(p_i = 0; p_i < nPointsPlate-1; p_i++) {
line3d->SetPoint(0, pointsPlate[p_i].x(), pointsPlate[p_i].y(), pointsPlate[p_i].z());
line3d->SetPoint(1, pointsPlate[p_i+1].x(), pointsPlate[p_i+1].y(), pointsPlate[p_i+1].z());
line3d->DrawClone();
}
rayout->DrawS(pointsPlate[p_i].x(), -0.1);
if(fatePlate == noreflection) { // lost on plate side
rayout->SetColor(col_out);
rayout->DrawS(pointsPlate[p_i].x(), 10.0);
}
}
}
if(! (fatePlate == hitExit or fatePlate == refracted) ) {
guide->GetHFate()->Fill(rays);
if (dbg)printf("CDetector::propagate Simulated ray missed the entry surface!\n");
if (fatePlate == backreflected)
guide->GetHFate()->Fill(fatePlate); // reflected back
else
guide->GetHFate()->Fill(noreflection); //lost on plate side
return fatePlate;
}
//Ray hits light guide
histoPlate->Fill(pointsPlate[0].y(), pointsPlate[0].z()); // entry point
}
else {
//rayout = rayin;
if(draw) rayout->DrawS(center.x(), -10.0);
}
// If the ray is not reflected in the plate
// Draw the light guide and propagate the ray through
//const int max_n_points = guide->GetMAXODB() + 2;
TVector3 points[max_n_points];
TVector3 presecisce;
int n_points;
int fate_glass;
CRay *ray0 = new CRay(*rayout);
// delete rayout; -> creates dangling reference when tries to delete ray0!
//delete rayin; -> delete rayout!
CRay *ray1 = new CRay;
fate = guide->PropagateRay(*ray0, ray1, &n_points, points);
if (dbg) {
if (fate == backreflected) printf("DETECTOR::backreflected\n");
}
line3d->SetLineColor(col_lg);
int p_i;
if(guide_on) {
if(draw) {
if(fate == missed) {
if (dbg) printf("Detector: fate=missed\n");
TVector3 r = ray1->GetR();
TVector3 n = ray1->GetN();
ray1->Set(r,n);
ray1->DrawS(center.x(), 10.0);
} else {
for(p_i = 0; p_i < n_points-1; p_i++) {
line3d->SetPoint(0, points[p_i].x(), points[p_i].y(), points[p_i].z());
line3d->SetPoint(1, points[p_i+1].x(), points[p_i+1].y(), points[p_i+1].z());
line3d->DrawClone();
}
if(fate != noreflection) {
if (dbg) printf("Detector: fate != noreflection, fate = %d\n", (int)fate);
if(glass_on) {/*if(fate == 1)*/ ray1->Draw(points[p_i].x(), center.x() + guide->getD() + glass_d);}
else {
ray1->SetColor(col_out);
ray1->DrawS(points[p_i].x(), 10.0);
}
}
}
}
if(! (fate == hitExit or fate == refracted) ) {
if (dbg) printf("Detector: fate != hit, refracted\n");
*out = *ray1;
delete ray0;
delete ray1;
delete rayout;
delete rayin;
return fate;
}
} else {
if (dbg) printf("Detector: fate = hit or refracted");
ray1 = ray0;
if(draw) {
if(glass_on) ray1->Draw(center.x(), center.x() /*+ window_d*/);
else ray1->DrawS(center.x(), 10.0);
}
}
fate = missed; // zgresil aktivno povrsino
if(glass_on) {
*ray0 = *ray1; ray1->SetColor(col_rgla);
fate_glass = glass->PropagateRay(*ray0, ray1, &presecisce);
if(fate_glass == 1) {
hglass->Fill(presecisce.y(), presecisce.z());
if(draw) ray1->DrawS(presecisce.x(), 10.0);
if(active->TestIntersection(&presecisce, *ray1)) {
fate = hitExit;
hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
hlaser->Fill((in.GetR()).y(), (in.GetR()).z());
}
if(detector->TestIntersection(&presecisce, *ray1))
hdetector->Fill(presecisce.y(), presecisce.z());
} else if(fate_glass == 2) {
if(draw) ray1->DrawS(presecisce.x(), 10.0);
}
} else {
// Main test: ray and SiPM surface
if(active->TestIntersection(&presecisce, *ray1)) {
fate = hitExit;
hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
}
// If it is on the same plane as SiPM
if(detector->TestIntersection(&presecisce, *ray1))
hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
}
//} else {
//if(draw) ray1->Draw(presecisce.x(), center.x()+d+window_d);
//}
*out = *ray1;
delete ray0;
delete ray1;
delete rayout;
delete rayin;
return fate;
}
//-----------------------------------------------------------------------------
void CDetector::Draw(int width)
{
if(guide_on) {
if( TMath::Abs(guide->getN1()-guide->getN2()) < MARGIN ) {
if(_plateOn) plate->drawSkel(col_LG, width);
guide->DrawSkel(col_LG, width);
}
else {
if(_plateOn) plate->draw(4, width);
guide->Draw(col_LG, width);
}
}
if(glass_on) glass_circle->Draw(col_glass, width);
//window_circle->Draw(col_glass, width);
active->Draw(col_active, width);
}
//=================================================================================
Plate::Plate(DetectorParameters& parameters)
{
TVector3 center = CENTER;
const double b = parameters.getB();
const double n1 = parameters.getN1();
const double n2 = parameters.getN2();
const double t = b/2.;
const double plateWidth = parameters.getPlateWidth();
center.SetX( CENTER.X() - plateWidth );
plate_edge[0].SetXYZ(0.0, t,-t);
plate_edge[1].SetXYZ(0.0, t, t);
plate_edge[2].SetXYZ(0.0,-t, t);
plate_edge[3].SetXYZ(0.0,-t,-t);
plate_edge[4].SetXYZ(plateWidth, t,-t);
plate_edge[5].SetXYZ(plateWidth, t, t);
plate_edge[6].SetXYZ(plateWidth,-t, t);
plate_edge[7].SetXYZ(plateWidth,-t,-t);
for(int i = 0; i<8; i++) plate_edge[i] += center;
sides[0] = new CSurface(SURF_REFRA, plate_edge, n1, n2, c_reflectivity);
sides[0]->FlipN();
sides[1] = new CSurface(SURF_REFRA, plate_edge[3], plate_edge[2], plate_edge[6], plate_edge[7], n2, n2, c_reflectivity);
sides[2] = new CSurface(SURF_REFRA, plate_edge[2], plate_edge[1], plate_edge[5], plate_edge[6], n2, n2, c_reflectivity);
sides[3] = new CSurface(SURF_REFRA, plate_edge[1], plate_edge[0], plate_edge[4], plate_edge[5], n2, n2, c_reflectivity);
sides[4] = new CSurface(SURF_REFRA, plate_edge[0], plate_edge[3], plate_edge[7], plate_edge[4], n2, n2, c_reflectivity);
sides[5] = new CSurface(SURF_REFRA, &plate_edge[4], n2, n2, c_reflectivity);
sides[5]->FlipN();
for(int i=0; i<6; i++) sides[i]->SetFresnel(1);
}
void Plate::draw(int color, int width)
{
for(int i = 0; i<6; i++) sides[i]->Draw(color, width);
}
void Plate::drawSkel(int color, int width)
{
TPolyLine3D line3d(2);
line3d.SetLineWidth(width);
line3d.SetLineColor(color);
for(int i=0; i<4; i++) {
line3d.SetPoint(0, plate_edge[i+0].x(), plate_edge[i+0].y(), plate_edge[i+0].z());
line3d.SetPoint(1, plate_edge[i+4].x(), plate_edge[i+4].y(), plate_edge[i+4].z());
line3d.DrawClone();
}
}
Fate Plate::propagateRay(CRay in, CRay *out, int *n_points, TVector3 *points)
{
CRay ray0;
CRay ray1;
TVector3 vec0, vec1;
Fate fate = enter;
int inters_i = 0;
ray0 = in;
int n_odb = 0;
int last_hit = 0;
int propagation = 0;
int result = sides[0]->PropagateRay(ray0, &ray1, &vec1);
if( !result ) {
// ce -NI- presecisca z vstopno
fate = missed;
} else if(result == REFLECTION) {
if (dbg) printf("PLATE: reflected\n");
fate = backreflected;
} else {
points[0] = ray1.GetR();
//hfate->Fill(enter);
//hin->Fill(vec1.y(), vec1.z());
while (n_odb++ < MAX_REFLECTIONS) {
ray0 = ray1;
vec0 = vec1;
propagation = 11;
for(inters_i=0; inters_i<6; inters_i++) {
if( inters_i != last_hit) {
if( sides[inters_i]->TestIntersection(&vec1, ray1) ) break;
}
}
points[n_odb] = vec1;
if(inters_i == 0) {
fate = backreflected;
break;} // backreflection
propagation = sides[inters_i]->PropagateRay(ray0, &ray1, &vec1);
if(inters_i == 5) { // successfull exit
fate = hitExit;
//hout->Fill(vec1.y(), vec1.z());
//hnodb_exit->Fill(n_odb-1);
n_odb++;
points[n_odb] = vec1;
ray0 = ray1;
break;
}
if(propagation == 1) {
fate = noreflection; //at side
n_odb++;
points[n_odb] = vec1;
ray0 = ray1;
break;} // no total reflection when should be
if(propagation == -2) {
fate = noreflection;
break;
} // absorption due to finite reflectivity
last_hit = inters_i;
}
}
*n_points = n_odb+1;
*out = ray0;
return fate;
};
//=============================================================================================================================== <<<<<<<<