Rev 146 |
Rev 172 |
Go to most recent revision |
Blame |
Compare with Previous |
Last modification |
View Log
| RSS feed
#include "../include/sipmscan.h"
#include "../include/workstation.h"
#include <stdio.h>
#include <stdlib.h>
int retTemp;
// Additional functions -------------------------------------
// Display the currently selected histogram in the file list
void TGAppMainFrame::DisplayHistogram(char *histfile, int histtype, int opt)
{
char histtime[256];
char ctemp[512];
if(DBGSIG)
printf("DisplayHistogram(): Selected file: %s\n", histfile);
TCanvas *gCanvas = analysisCanvas->GetCanvas();
inroot = TFile::Open(histfile, "READ");
TTree *header_data, *meas_data;
inroot->GetObject("header_data", header_data);
inroot->GetObject("meas_data", meas_data);
// Reading the header
header_data->SetBranchAddress("nrch", &evtheader.nrch);
header_data->GetEntry(0);
header_data->SetBranchAddress("timestamp", &evtheader.timestamp);
header_data->GetEntry(0);
header_data->SetBranchAddress("biasvolt", &evtheader.biasvolt);
header_data->GetEntry(0);
header_data->SetBranchAddress("xpos", &evtheader.xpos);
header_data->GetEntry(0);
header_data->SetBranchAddress("ypos", &evtheader.ypos);
header_data->GetEntry(0);
header_data->SetBranchAddress("zpos", &evtheader.zpos);
header_data->GetEntry(0);
header_data->SetBranchAddress("temperature", &evtheader.temperature);
header_data->GetEntry(0);
if( header_data->FindBranch("angle") )
{
header_data->SetBranchAddress("angle", &evtheader.angle);
header_data->GetEntry(0);
}
header_data->SetBranchAddress("laserinfo", &evtheader.laserinfo);
header_data->GetEntry(0);
// Change timestamp to local time
GetTime(evtheader.timestamp, histtime);
// Displaying header information debug
if(DBGSIG)
{
printf("DisplayHistogram(): Opened file header information:\n");
printf("- Number of channels (ADC and TDC are considered as separate channels): %d\n", evtheader.nrch);
printf("- Timestamp: %d (%s)\n", evtheader.timestamp, histtime);
printf("- Bias voltage: %lf\n", evtheader.biasvolt);
printf("- Table position (X,Y,Z): %d, %d, %d\n", evtheader.xpos, evtheader.ypos, evtheader.zpos);
if(evtheader.temperature)
printf("- Temperature: %lf\n", evtheader.temperature);
if( header_data->FindBranch("angle") )
printf("- Incidence angle: %lf\n", evtheader.angle);
else
printf("- Incidence angle: No angle information!\n");
printf("- Laser and filter settings: %s\n", evtheader.laserinfo);
}
// Displaying header information on the GUI
dispTime->widgetTE->SetText(histtime);
dispBias->widgetNE[0]->SetNumber(evtheader.biasvolt);
sprintf(ctemp, "%d, %d, %d", evtheader.xpos, evtheader.ypos, evtheader.zpos);
dispPos->widgetTE->SetText(ctemp);
if(evtheader.temperature)
dispTemp->widgetNE[0]->SetNumber(evtheader.temperature);
else
dispTemp->widgetNE[0]->SetNumber(0.0);
if( header_data->FindBranch("angle") )
dispAngle->widgetNE[0]->SetNumber(evtheader.angle);
else
dispAngle->widgetNE[0]->SetNumber(0.0);
dispLaser->widgetTE->SetText(evtheader.laserinfo);
selectCh->widgetNE[0]->SetLimitValues(0, (evtheader.nrch/2)-1);
// Redraw the histograms
int j;
char rdc[256];
char rdcsel[256];
j = selectCh->widgetNE[0]->GetNumber();
printf("Found %d data points.\n", (int)meas_data->GetEntries());
gCanvas->cd();
double range[4];
range[0] = adcRange->widgetNE[0]->GetNumber();
range[1] = adcRange->widgetNE[1]->GetNumber();
range[2] = tdcRange->widgetNE[0]->GetNumber();
range[3] = tdcRange->widgetNE[1]->GetNumber();
// ADC histogram
if(histtype == 0)
{
if( range[0] == range[1] )
sprintf(rdc, "ADC%d>>%s", j, histname);
else
sprintf(rdc, "ADC%d>>%s(%d,%lf,%lf)", j, histname, (int)(range[1]-range[0]), range[0]-0.5, range[1]-0.5);
sprintf(rdcsel, "(TDC%d>%lf)&&(TDC%d<%lf)", j, range[2]*tdctimeconversion, j, range[3]*tdctimeconversion);
meas_data->Draw(rdc, rdcsel);
sprintf(rdc, "ADC%d, Vbias=%.3lf, TDC=(%.2lf,%.2lf);ADC;", j, evtheader.biasvolt, range[2], range[3]);
TH1F *histtemp = (TH1F*)gCanvas->GetPrimitive(histname);
if(!cleanPlots)
histtemp->SetTitle(rdc);
else
histtemp->SetTitle(";ADC;");
histtemp->GetXaxis()->SetLabelSize(0.025);
histtemp->GetXaxis()->CenterTitle(kTRUE);
histtemp->GetYaxis()->SetLabelSize(0.025);
if(cleanPlots)
{
TGaxis *yax = (TGaxis*)histtemp->GetYaxis();
yax->SetMaxDigits(4);
}
gCanvas->Modified();
gCanvas->Update();
if( yRange->widgetNE[0]->GetNumber() != yRange->widgetNE[1]->GetNumber() )
{
if( (histOpt->widgetChBox[0]->IsDown()) && (yRange->widgetNE[0]->GetNumber() <= 0) )
{
histtemp->GetYaxis()->SetRangeUser(0.5, yRange->widgetNE[1]->GetNumber());
yRange->widgetNE[0]->SetNumber(0.5);
logChange = 1;
}
else
{
gCanvas->SetLogy(kFALSE);
if(logChange == 1)
{
yRange->widgetNE[0]->SetNumber(0.0);
logChange = 0;
}
histtemp->GetYaxis()->SetRangeUser(yRange->widgetNE[0]->GetNumber(), yRange->widgetNE[1]->GetNumber());
}
}
TPaveStats *stats = (TPaveStats*)histtemp->FindObject("stats");
if(!cleanPlots)
{
stats->SetX1NDC(0.84); stats->SetX2NDC(0.97);
stats->SetY1NDC(0.87); stats->SetY2NDC(0.97);
}
else
{
stats->SetX1NDC(1.1); stats->SetX2NDC(1.3);
stats->SetY1NDC(1.1); stats->SetY2NDC(1.3);
}
}
// TDC histogram
else if(histtype == 1)
{
if( range[0] == range[1] )
sprintf(rdc, "(TDC%d/%lf)>>%s", j, tdctimeconversion, histname);
else
sprintf(rdc, "(TDC%d/%lf)>>%s(%d,%lf,%lf)", j, tdctimeconversion, histname, (int)((range[3]-range[2])*tdctimeconversion), range[2], range[3]);
sprintf(rdcsel, "(TDC%d>%lf)&&(TDC%d<%lf)", j, range[2]*tdctimeconversion, j, range[3]*tdctimeconversion);
meas_data->Draw(rdc, rdcsel);
sprintf(rdc, "TDC%d, Vbias=%.3lf, TDC=(%.2lf,%.2lf);Time (TDC channel) [ns];", j, evtheader.biasvolt, range[2], range[3]);
TH1F *histtemp = (TH1F*)gCanvas->GetPrimitive(histname);
if(!cleanPlots)
histtemp->SetTitle(rdc);
else
histtemp->SetTitle(";Time (TDC channel) [ns];");
histtemp->GetXaxis()->SetLabelSize(0.025);
histtemp->GetXaxis()->CenterTitle(kTRUE);
histtemp->GetYaxis()->SetLabelSize(0.025);
if(cleanPlots)
{
TGaxis *yax = (TGaxis*)histtemp->GetYaxis();
yax->SetMaxDigits(4);
}
gCanvas->Modified();
gCanvas->Update();
if( yRange->widgetNE[0]->GetNumber() != yRange->widgetNE[1]->GetNumber() )
{
if( (histOpt->widgetChBox[0]->IsDown()) && (yRange->widgetNE[0]->GetNumber() <= 0) )
{
histtemp->GetYaxis()->SetRangeUser(0.5, yRange->widgetNE[1]->GetNumber());
yRange->widgetNE[0]->SetNumber(0.5);
logChange = 1;
}
else
{
gCanvas->SetLogy(kFALSE);
if(logChange == 1)
{
yRange->widgetNE[0]->SetNumber(0.0);
logChange = 0;
}
histtemp->GetYaxis()->SetRangeUser(yRange->widgetNE[0]->GetNumber(), yRange->widgetNE[1]->GetNumber());
}
}
TPaveStats *stats = (TPaveStats*)histtemp->FindObject("stats");
if(!cleanPlots)
{
stats->SetX1NDC(0.84); stats->SetX2NDC(0.97);
stats->SetY1NDC(0.87); stats->SetY2NDC(0.97);
}
else
{
stats->SetX1NDC(1.1); stats->SetX2NDC(1.3);
stats->SetY1NDC(1.1); stats->SetY2NDC(1.3);
}
}
// ADC vs. TDC histogram
else if(histtype == 2)
{
if( ((range[0] == range[1]) && (range[2] == range[3])) || (range[2] == range[3]) || (range[0] == range[1]) )
sprintf(rdc, "(TDC%d/%lf):ADC%d>>%s", j, tdctimeconversion, j, histname);
else
sprintf(rdc, "(TDC%d/%lf):ADC%d>>%s(%d,%lf,%lf,%d,%lf,%lf)", j, tdctimeconversion, j, histname, (int)(range[1]-range[0])/2, range[0]-0.5, range[1]-0.5, (int)((range[3]-range[2])*tdctimeconversion)/2, range[2], range[3]);
meas_data->Draw(rdc,"","COLZ");
sprintf(rdc, "ADC/TDC%d, Vbias=%.3lf, TDC=(%.2lf,%.2lf);ADC;TDC", j, evtheader.biasvolt, range[2], range[3]);
TH2F *histtemp = (TH2F*)gCanvas->GetPrimitive(histname);
if(!cleanPlots)
histtemp->SetTitle(rdc);
else
histtemp->SetTitle(";ADC;Time (TDC channel) [ns]");
histtemp->GetXaxis()->SetLabelSize(0.025);
histtemp->GetXaxis()->CenterTitle(kTRUE);
histtemp->GetYaxis()->SetLabelSize(0.025);
histtemp->GetYaxis()->CenterTitle(kTRUE);
histtemp->GetYaxis()->SetTitleOffset(1.35);
if(cleanPlots)
{
TGaxis *yax = (TGaxis*)histtemp->GetYaxis();
yax->SetMaxDigits(4);
}
gCanvas->Modified();
gCanvas->Update();
TPaveStats *stats = (TPaveStats*)histtemp->FindObject("stats");
stats->SetX1NDC(1.1); stats->SetX2NDC(1.3);
stats->SetY1NDC(1.1); stats->SetY2NDC(1.3);
TPaletteAxis *gpalette = (TPaletteAxis*)histtemp->GetListOfFunctions()->FindObject("palette");
gpalette->SetLabelSize(0.022);
}
if(histtype < 2)
{
if( histOpt->widgetChBox[0]->IsDown() )
gCanvas->SetLogy(kTRUE);
else if( !histOpt->widgetChBox[0]->IsDown() )
gCanvas->SetLogy(kFALSE);
}
else
gCanvas->SetLogy(kFALSE);
gCanvas->Modified();
gCanvas->Update();
delete header_data;
delete meas_data;
// Delete the opened file when we just display it in the analysis canvas (otherwise wait for histogram save)
if(opt != 1)
delete inroot;
// If you close the opened file (delete inroot), the data can not be accessed by other functions (any time we wish to use the data directly from histogram, we need to call the DisplayHistogram function -> using different opt to determine what we need to do)
}
// Start a measurement (acquisition from CAMAC)
void TGAppMainFrame::RunMeas(void *ptr, int runCase, int &scanon)
{
int vscan = 0, pscan = 0, zscan = 0, ascan = 0;
if(scansOn->widgetChBox[0]->IsDown()) vscan = 1;
if(scansOn->widgetChBox[1]->IsDown()) pscan = 1;
if(scansOn->widgetChBox[2]->IsDown()) zscan = 1;
if(scansOn->widgetChBox[3]->IsDown()) ascan = 1;
printf("Start of Run, run case %d\n", runCase);
float progVal;
char ctemp[256];
char ctemp2[256];
char fname[256];
int itemp = 0;
TH1F *liveHist;
float minVoltage, maxVoltage, stepVoltage, diffVoltage;
float minXpos, maxXpos, stepXpos, diffXpos;
float minYpos, maxYpos, stepYpos, diffYpos;
float minZpos, maxZpos, stepZpos, diffZpos;
float minAlpha, maxAlpha, stepAlpha, diffAlpha;
minVoltage = vOutStart->widgetNE[0]->GetNumber();
maxVoltage = vOutStop->widgetNE[0]->GetNumber();
diffVoltage = abs(maxVoltage - minVoltage);
stepVoltage = abs(vOutStep->widgetNE[0]->GetNumber());
minXpos = xPosMin->widgetNE[0]->GetNumber();
maxXpos = xPosMax->widgetNE[0]->GetNumber();
diffXpos = abs(maxXpos - minXpos);
stepXpos = abs(xPosStep->widgetNE[0]->GetNumber());
minYpos = yPosMin->widgetNE[0]->GetNumber();
maxYpos = yPosMax->widgetNE[0]->GetNumber();
diffYpos = abs(maxYpos - minYpos);
stepYpos = abs(yPosStep->widgetNE[0]->GetNumber());
minZpos = zPosMin->widgetNE[0]->GetNumber();
maxZpos = zPosMax->widgetNE[0]->GetNumber();
diffZpos = abs(maxZpos - minZpos);
stepZpos = abs(zPosStep->widgetNE[0]->GetNumber());
minAlpha = rotPosMin->widgetNE[0]->GetNumber();
maxAlpha = rotPosMax->widgetNE[0]->GetNumber();
diffAlpha = abs(maxAlpha - minAlpha);
stepAlpha = abs(rotPosStep->widgetNE[0]->GetNumber());
remove_ext((char*)fileName->widgetTE->GetText(), ctemp);
// TODO - angle scan + voltage scan
// Voltage or surface scan
if( vscan || pscan || ascan )
{
// No Z scan, No angle scan
if(!zscan && !ascan)
{
// When we have a voltage scan
if( vscan && (stepVoltage > 0.) )
SeqNumber(runCase, (int)diffVoltage/stepVoltage, ctemp2);
// With only a surface scan
else if(pscan)
{
if( stepXpos == 0 )
itemp = 1;
else
itemp = (int)diffXpos/stepXpos;
if( stepYpos == 0 )
itemp *= 1;
else
itemp *= (int)diffYpos/stepYpos;
SeqNumber(runCase, itemp, ctemp2);
}
sprintf(fname, "%s_%s%s", ctemp, ctemp2, histext);
}
// With Z scan, No angle scan
else if(zscan && !ascan)
{
SeqNumber((int)zPos->widgetNE[0]->GetNumber(), maxZpos, ctemp2);
// Voltage scan is on
if( vscan && (stepVoltage > 0.) )
{
sprintf(fname, "%s_z%s_", ctemp, ctemp2);
SeqNumber(runCase, (int)diffVoltage/stepVoltage+1, ctemp2);
strcat(fname, ctemp2);
strcat(fname, histext);
}
// Surface scan is on
else if(pscan)
{
sprintf(fname, "%s_z%s_", ctemp, ctemp2);
if( stepXpos == 0 )
itemp = 1;
else
itemp = (int)diffXpos/stepXpos+1;
if( stepYpos == 0 )
itemp *= 1;
else
itemp *= (int)diffYpos/stepYpos+1;
SeqNumber(runCase, itemp, ctemp2);
strcat(fname, ctemp2);
strcat(fname, histext);
}
// Just Z scan
else
sprintf(fname, "%s_z%s%s", ctemp, ctemp2, histext);
}
// No Z scan, With angle scan
else if(!zscan && ascan)
{
SeqNumber(runCase, (int)diffAlpha/stepAlpha, ctemp2);
// Voltage scan is on
if( vscan && (stepVoltage > 0.) )
{
sprintf(fname, "%s_phi%s_", ctemp, ctemp2);
SeqNumber(runCase, (int)diffVoltage/stepVoltage+1, ctemp2);
strcat(fname, ctemp2);
strcat(fname, histext);
}
// Just angle scan
else
sprintf(fname, "%s_phi%s%s", ctemp, ctemp2, histext);
}
}
// All the rest
else if(!vscan && !pscan)
sprintf(fname, "%s%s", ctemp, histext);
// Check if set voltage is below the hard limit
if( vOut->widgetNE[0]->GetNumber() > vHardlimit->widgetNE[0]->GetNumber() )
{
printf("Voltage hard limit triggered (%lf > %lf)!\n", vOut->widgetNE[0]->GetNumber(), vHardlimit->widgetNE[0]->GetNumber() );
vOut->widgetNE[0]->SetNumber( vHardlimit->widgetNE[0]->GetNumber() );
}
printf("Output file is (runCase = %d): %s\n", runCase, fname);
// Writing to output file
outroot = TFile::Open(fname, "RECREATE");
TTree *header_data = new TTree("header_data", "Header information for the measurement.");
TTree *meas_data = new TTree("meas_data", "Saved ADC and TDC measurement data.");
TTree *scope_data = new TTree("scope_data", "Saved scope measurement data.");
// Branches for the header
header_data->Branch("nrch", &evtheader.nrch, "nrch/I");
header_data->Branch("timestamp", &evtheader.timestamp, "timestamp/I");
header_data->Branch("biasvolt", &evtheader.biasvolt, "biasvolt/D");
header_data->Branch("xpos", &evtheader.xpos, "xpos/I");
header_data->Branch("ypos", &evtheader.ypos, "ypos/I");
header_data->Branch("zpos", &evtheader.zpos, "zpos/I");
header_data->Branch("temperature", &evtheader.temperature, "temperature/D");
header_data->Branch("angle", &evtheader.angle, "angle/D");
header_data->Branch("laserinfo", &evtheader.laserinfo, "laserinfo/C");
evtheader.nrch = (int)NCH->widgetNE[0]->GetNumber()*2;
evtheader.timestamp = (int)time(NULL);
evtheader.biasvolt = (double)vOut->widgetNE[0]->GetNumber();
if(posUnits->widgetCB->GetSelected() == 0)
{
evtheader.xpos = (int)xPos->widgetNE[0]->GetNumber();
evtheader.ypos = (int)yPos->widgetNE[0]->GetNumber();
evtheader.zpos = (int)zPos->widgetNE[0]->GetNumber();
}
else if(posUnits->widgetCB->GetSelected() == 1)
{
evtheader.xpos = (int)xPos->widgetNE[0]->GetNumber()/lenconversion;
evtheader.ypos = (int)yPos->widgetNE[0]->GetNumber()/lenconversion;
evtheader.zpos = (int)zPos->widgetNE[0]->GetNumber()/lenconversion;
}
evtheader.temperature = (double)chtemp->widgetNE[0]->GetNumber();
if(rotUnits->widgetCB->GetSelected() == 0)
evtheader.angle = (double)rotPos->widgetNE[0]->GetNumber()*rotconversion;
else if(rotUnits->widgetCB->GetSelected() == 1)
evtheader.angle = (double)rotPos->widgetNE[0]->GetNumber();
sprintf(evtheader.laserinfo, "%s", laserInfo->widgetTE->GetText());
char histtime[256];
GetTime(evtheader.timestamp, histtime);
printf("Save file header information:\n");
printf("- Number of channels: %d\n", evtheader.nrch);
printf("- Timestamp: %d (%s)\n", evtheader.timestamp, histtime);
printf("- Bias voltage: %lf\n", evtheader.biasvolt);
printf("- Table position (X,Y,Z): %d, %d, %d\n", evtheader.xpos, evtheader.ypos, evtheader.zpos);
printf("- Temperature: %lf\n", evtheader.temperature);
printf("- Incidence angle: %lf\n", evtheader.angle);
printf("- Laser and filter settings: %s\n", evtheader.laserinfo);
header_data->Fill();
// Branches for ADC and TDC data
for(int i = 0; i < evtheader.nrch/2; i++)
{
sprintf(ctemp, "ADC%d", i);
sprintf(fname, "ADC%d/I", i);
meas_data->Branch(ctemp, &evtdata.adcdata[i], fname);
sprintf(ctemp, "TDC%d", i);
sprintf(fname, "TDC%d/I", i);
meas_data->Branch(ctemp, &evtdata.tdcdata[i], fname);
}
//TODO
// Initialize the scope before measurement
/* if( sCamaclink->IsDown() )
InitializeScope();*/
// Branch for scope measurement data
/* if(gScopeDaq->scopeUseType == 2) // only if we select waveform measurement
{
if(gScopeDaq->scopeMeasSel == 0)
scope_data->Branch("amp", &evtmeas.measdata, "amp/D");
else if(gScopeDaq->scopeMeasSel == 1)
scope_data->Branch("area", &evtmeas.measdata, "area/D");
else if(gScopeDaq->scopeMeasSel == 2)
scope_data->Branch("delay", &evtmeas.measdata, "delay/D");
else if(gScopeDaq->scopeMeasSel == 3)
scope_data->Branch("fall", &evtmeas.measdata, "fall/D");
else if(gScopeDaq->scopeMeasSel == 4)
scope_data->Branch("freq", &evtmeas.measdata, "freq/D");
else if(gScopeDaq->scopeMeasSel == 5)
scope_data->Branch("max", &evtmeas.measdata, "max/D");
else if(gScopeDaq->scopeMeasSel == 6)
scope_data->Branch("mean", &evtmeas.measdata, "mean/D");
else if(gScopeDaq->scopeMeasSel == 7)
scope_data->Branch("min", &evtmeas.measdata, "min/D");
else if(gScopeDaq->scopeMeasSel == 8)
scope_data->Branch("pk2p", &evtmeas.measdata, "pk2p/D");
else if(gScopeDaq->scopeMeasSel == 9)
scope_data->Branch("pwidth", &evtmeas.measdata, "pwidth/D");
else if(gScopeDaq->scopeMeasSel == 10)
scope_data->Branch("rise", &evtmeas.measdata, "rise/D");
}*/
int neve = (int) evtNum->widgetNE[0]->GetNumber();
int allEvt, zProg;
zProg = 1;
#if WORKSTAT == 'I'
#else
// ONLY FOR TESTING!
TRandom *randNum = new TRandom();
randNum->SetSeed(0);
// ONLY FOR TESTING!
#endif
// Initialize the CAMAC
if (gDaq)
{
if(scanon == 0)
{
gDaq->init(evtheader.nrch);
scanon = 1;
}
gDaq->fStop=0;
// Set the stopwatch
clock_t clkt1;
// Prepare histogram for live histogram update
int liven;
TCanvas *gCanvas;
if(liveUpdate && (!vscan && !pscan && !zscan && !ascan))
{
gCanvas = measCanvas->GetCanvas();
gCanvas->SetGrid();
gCanvas->cd();
liveHist = new TH1F(histname,"",(int)TMath::Sqrt(neve),0,0);
liven = 1;
}
// Start gathering
gDaq->start();
for (int n=0;n<neve && !gDaq->fStop ;/*n++*/)
{
int nb = gDaq->event(gBuf,BSIZE);
#if WORKSTAT == 'I'
#else
// ONLY FOR TESTING!
for(int i=0; i < evtheader.nrch; i++)
{
if(i == 1)
gBuf[i] = randNum->Gaus(1500,300);
else if(i == 0)
gBuf[i] = randNum->Poisson(2500);
}
// ONLY FOR TESTING!
#endif
if (nb<=0) n--;
int nc=0;
while ( (nb>0) && (n<neve) )
{
for(int i = 0; i < evtheader.nrch; i++)
{
unsigned short adc = gBuf[i+nc]&0xFFFF;
if(i % 2 == 0) // TDC
evtdata.tdcdata[i/2] = (int)adc;
else if(i % 2 == 1) // ADC
evtdata.adcdata[i/2] = (int)adc;
// Start plotting the scope waveform
/* if( (gScopeDaq->scopeUseType == 1) && (sCamaclink->IsDown()) )
StartScopeAcq();*/ // TODO
}
meas_data->Fill();
n++;
sleep(1);
// Start making a scope measurement
/* if( (gScopeDaq->scopeUseType == 2) && (sCamaclink->IsDown()) )
{
StartScopeAcq();
evtmeas.measdata = gScopeDaq->measubuf;
}
scope_data->Fill();*/ // TODO
// Start filling the histogram (only in normal single scan)
if(liveUpdate && (!vscan && !pscan && !zscan && !ascan))
{
liveHist->Fill(evtdata.adcdata[0]);
if( n == (neve*liven)/10 )
{
gCanvas->cd();
liveHist->Draw("");
gCanvas->Modified();
gCanvas->Update();
liven++;
}
}
nc += evtheader.nrch;
nb -= evtheader.nrch;
}
MyTimer();
allEvt = n;
if (gSystem->ProcessEvents()) printf("Run Interrupted\n");
if( acqStarted && (n == (neve*zProg)/10) && (!vscan && !pscan && !zscan && !ascan) )
{
// Progress the progress bar
progVal = (float)zProg*10;
measProgress->widgetPB->SetPosition(progVal);
// Calculate the remaining time
TimeEstimate(clkt0, timet0, progVal, ctemp, 0);
printf("End time: %s\n", ctemp);
measProgress->widgetTE->SetText(ctemp);
gVirtualX->Update(1);
zProg++;
}
}
printf("Number of gathered events: %d\n", allEvt);
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
gDaq->stop();
}
printf("End of Run neve=%d\n",neve);
header_data->Write();
meas_data->Write();
// scope_data->Write(); // TODO
delete header_data;
delete meas_data;
delete scope_data;
// Remove the histogram
if(liveUpdate && (!vscan && !pscan && !zscan && !ascan))
delete liveHist;
outroot->Close();
}
int TGAppMainFrame::MyTimer()
{
char cmd[100];
GetTime(-1, cmd);
if (timeStamp) timeStamp->widgetTE->SetText(cmd);
return 0;
}
// Additional functions -------------------------------------
// Settings pane connections --------------------------------
// Enable or disable scans
void TGAppMainFrame::EnableScan(int type)
{
// Voltage scan
if(type == 0)
{
if(scansOn->widgetChBox[type]->IsOn())
{
vOutStart->widgetNE[0]->SetState(kTRUE);
vOutStop->widgetNE[0]->SetState(kTRUE);
vOutStep->widgetNE[0]->SetState(kTRUE);
}
else
{
vOutStart->widgetNE[0]->SetState(kFALSE);
vOutStop->widgetNE[0]->SetState(kFALSE);
vOutStep->widgetNE[0]->SetState(kFALSE);
}
}
// Surface (X, Y axis) scan
else if(type == 1)
{
if(scansOn->widgetChBox[type]->IsOn())
{
xPosMin->widgetNE[0]->SetState(kTRUE);
xPosMax->widgetNE[0]->SetState(kTRUE);
xPosStep->widgetNE[0]->SetState(kTRUE);
yPosMin->widgetNE[0]->SetState(kTRUE);
yPosMax->widgetNE[0]->SetState(kTRUE);
yPosStep->widgetNE[0]->SetState(kTRUE);
}
else
{
xPosMin->widgetNE[0]->SetState(kFALSE);
xPosMax->widgetNE[0]->SetState(kFALSE);
xPosStep->widgetNE[0]->SetState(kFALSE);
yPosMin->widgetNE[0]->SetState(kFALSE);
yPosMax->widgetNE[0]->SetState(kFALSE);
yPosStep->widgetNE[0]->SetState(kFALSE);
}
}
// Z axis scan
else if(type == 2)
{
if(scansOn->widgetChBox[type]->IsOn())
{
zPosMin->widgetNE[0]->SetState(kTRUE);
zPosMax->widgetNE[0]->SetState(kTRUE);
zPosStep->widgetNE[0]->SetState(kTRUE);
}
else
{
zPosMin->widgetNE[0]->SetState(kFALSE);
zPosMax->widgetNE[0]->SetState(kFALSE);
zPosStep->widgetNE[0]->SetState(kFALSE);
}
}
// Incidence angle scan
else if(type == 3)
{
if(scansOn->widgetChBox[type]->IsOn())
{
rotPosMin->widgetNE[0]->SetState(kTRUE);
rotPosMax->widgetNE[0]->SetState(kTRUE);
rotPosStep->widgetNE[0]->SetState(kTRUE);
}
else
{
rotPosMin->widgetNE[0]->SetState(kFALSE);
rotPosMax->widgetNE[0]->SetState(kFALSE);
rotPosStep->widgetNE[0]->SetState(kFALSE);
}
}
}
// Apply the upper voltage limit from settings pane to main window
void TGAppMainFrame::VoltageLimit()
{
vOut->widgetNE[0]->SetLimitValues(0, vHardlimit->widgetNE[0]->GetNumber() );
}
// Select the table position units to be used (1 = 0.3595 micron)
void TGAppMainFrame::ChangeUnits(int type)
{
int pos[12], poslim[3], chng = 0;
double micro[12], microlim[3];
TGNumberEntry *posEntries[12];
posEntries[0] = (TGNumberEntry*)xPos->widgetNE[0];
posEntries[1] = (TGNumberEntry*)yPos->widgetNE[0];
posEntries[2] = (TGNumberEntry*)zPos->widgetNE[0];
posEntries[3] = (TGNumberEntry*)xPosMin->widgetNE[0];
posEntries[4] = (TGNumberEntry*)xPosMax->widgetNE[0];
posEntries[5] = (TGNumberEntry*)xPosStep->widgetNE[0];
posEntries[6] = (TGNumberEntry*)yPosMin->widgetNE[0];
posEntries[7] = (TGNumberEntry*)yPosMax->widgetNE[0];
posEntries[8] = (TGNumberEntry*)yPosStep->widgetNE[0];
posEntries[9] = (TGNumberEntry*)zPosMin->widgetNE[0];
posEntries[10] = (TGNumberEntry*)zPosMax->widgetNE[0];
posEntries[11] = (TGNumberEntry*)zPosStep->widgetNE[0];
// Table position values
if(type == 0)
{
// Check if we had microns before
if(posEntries[0]->GetNumStyle() == TGNumberFormat::kNESRealTwo)
chng = 1;
// Change to table position values
if(chng == 1)
{
for(int i = 0; i < 12; i++)
{
if(posEntries[i]->GetNumber() == 0.0)
pos[i] = 0;
else
pos[i] = (int)posEntries[i]->GetNumber()/lenconversion;
}
poslim[0] = -100;
poslim[1] = 215000;
poslim[2] = 375000;
for(int i = 0; i < 12; i++)
{
posEntries[i]->SetNumStyle(TGNumberFormat::kNESInteger);
if( (i > 8) || (i == 2) ) // limits for Z axis (longer table)
posEntries[i]->SetLimits(TGNumberFormat::kNELLimitMinMax, poslim[0], poslim[2]);
else
posEntries[i]->SetLimits(TGNumberFormat::kNELLimitMinMax, poslim[0], poslim[1]);
posEntries[i]->SetNumber(pos[i]);
}
}
}
// Microns
else if(type == 1)
{
// Check if we had table position values before
if(posEntries[0]->GetNumStyle() == TGNumberFormat::kNESInteger)
chng = 1;
// Change to microns
if(chng == 1)
{
for(int i = 0; i < 12; i++)
{
if(posEntries[i]->GetNumber() == 0.0)
micro[i] = 0.;
else
micro[i] = (double)posEntries[i]->GetNumber()*lenconversion;
}
microlim[0] = (double)-100*lenconversion;
microlim[1] = (double)215000*lenconversion;
microlim[2] = (double)375000*lenconversion;
for(int i = 0; i < 12; i++)
{
posEntries[i]->SetNumStyle(TGNumberFormat::kNESRealTwo);
if( (i > 8) || (i == 2) ) // limits for Z axis (longer table)
posEntries[i]->SetLimits(TGNumberFormat::kNELLimitMinMax, microlim[0], microlim[2]);
else
posEntries[i]->SetLimits(TGNumberFormat::kNELLimitMinMax, microlim[0], microlim[1]);
posEntries[i]->SetNumber(micro[i]);
}
}
}
}
// Select the rotation units to be used (1 = 6.3281/3600 degrees)
void TGAppMainFrame::ChangeUnitsRot(int type)
{
int rot[4], rotlim[2], chng = 0;
double deg[4], deglim[2];
TGNumberEntry *rotEntries[4];
rotEntries[0] = (TGNumberEntry*)rotPos->widgetNE[0];
rotEntries[1] = (TGNumberEntry*)rotPosMin->widgetNE[0];
rotEntries[2] = (TGNumberEntry*)rotPosMax->widgetNE[0];
rotEntries[3] = (TGNumberEntry*)rotPosStep->widgetNE[0];
// Rotation values
if(type == 0)
{
// Check if we had degrees before
if(rotEntries[0]->GetNumStyle() == TGNumberFormat::kNESRealTwo)
chng = 1;
// Change to rotation values
if(chng == 1)
{
for(int i = 0; i < 4; i++)
{
if(rotEntries[i]->GetNumber() == 0.0)
rot[i] = 0;
else
rot[i] = (int)rotEntries[i]->GetNumber()/rotconversion;
}
rotlim[0] = (int)-180/rotconversion;
rotlim[1] = (int)180/rotconversion;
for(int i = 0; i < 4; i++)
{
rotEntries[i]->SetNumStyle(TGNumberFormat::kNESInteger);
rotEntries[i]->SetLimits(TGNumberFormat::kNELLimitMinMax, rotlim[0], rotlim[1]);
rotEntries[i]->SetNumber(rot[i]);
}
}
}
// Degree
else if(type == 1)
{
// Check if we had table position values before
if(rotEntries[0]->GetNumStyle() == TGNumberFormat::kNESInteger)
chng = 1;
// Change to degrees
if(chng == 1)
{
for(int i = 0; i < 4; i++)
{
if(rotEntries[i]->GetNumber() == 0)
deg[i] = 0.;
else
deg[i] = (double)rotEntries[i]->GetNumber()*rotconversion;
}
deglim[0] = -180.;
deglim[1] = 180.;
for(int i = 0; i < 4; i++)
{
rotEntries[i]->SetNumStyle(TGNumberFormat::kNESRealTwo);
rotEntries[i]->SetLimits(TGNumberFormat::kNELLimitMinMax, deglim[0], deglim[1]);
rotEntries[i]->SetNumber(deg[i]);
}
}
}
}
// Enable display canvas to have a live update of histogram
void TGAppMainFrame::EnableLiveUpdate()
{
liveUpdate = liveDisp->widgetChBox[0]->IsDown();
}
// Settings pane connections --------------------------------
// Main measurement window connections ----------------------
// Get the currently selected channel
int TGAppMainFrame::GetChannel()
{
int selectedOutput;
if(vOutCh->widgetCB->GetSelected() < 8) selectedOutput = (vOutCh->widgetCB->GetSelected())+1;
else if( (vOutCh->widgetCB->GetSelected() >= 8) && (vOutCh->widgetCB->GetSelected() < 16) ) selectedOutput = (vOutCh->widgetCB->GetSelected())+93;
else selectedOutput = 1;
return selectedOutput;
}
// Set, get or reset the output voltage
void TGAppMainFrame::VoltOut(int opt)
{
char cmd[256];
// Set the selected voltage
if(opt == 0)
{
int outOn;
float outputVoltage;
outputVoltage = vOut->widgetNE[0]->GetNumber();
if(vOutOpt->widgetChBox[1]->IsOn()) outOn = 1;
else outOn = 0;
fflush(stdout);
sprintf(cmd, "%s/src/mpod/mpod_voltage.sh -o %d -v %f -s %d", rootdir, GetChannel(), outputVoltage, outOn);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
}
// Get current voltage
else if(opt == 1)
{
fflush(stdout);
sprintf(cmd, "%s/src/mpod/mpod_voltage.sh -o %d -g > %s/settings/curvolt.txt", rootdir, GetChannel(), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
#if WORKSTAT == 'I'
FILE* fvolt;
double dtemp;
char ctemp[24];
sprintf(cmd, "%s/settings/curvolt.txt", rootdir);
fvolt = fopen(cmd, "r");
if(fvolt != NULL)
{
sprintf(cmd, "WIENER-CRATE-MIB::outputVoltage.u%d = Opaque: Float: %s V\n", GetChannel()-1, "%lf" );
retTemp = fscanf(fvolt, cmd, &dtemp);
vOut->widgetNE[0]->SetNumber(dtemp);
sprintf(cmd, "WIENER-CRATE-MIB::outputSwitch.u%d = INTEGER: %s\n", GetChannel()-1, "%s" );
retTemp = fscanf(fvolt, cmd, ctemp);
if( strcmp(ctemp, "On(1)") == 0 )
vOutOpt->widgetChBox[1]->SetState(kButtonDown);
else if( strcmp(ctemp, "Off(0)") == 0 )
vOutOpt->widgetChBox[1]->SetState(kButtonUp);
}
fclose(fvolt);
#endif
}
// Reset output voltage (if stuck in interlock)
else if(opt == 2)
{
vOut->widgetNE[0]->SetNumber(0.000);
vOutOpt->widgetChBox[1]->SetState(kButtonUp);
fflush(stdout);
sprintf(cmd, "%s/src/mpod/mpod_voltage.sh -r %d", rootdir, GetChannel());
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
}
}
// Set output voltage polarity to negative
void TGAppMainFrame::NegativePolarity()
{
double newHardlimit;
int polar = 0; // 0 = positive, 1 = negative
if(vOutOpt->widgetChBox[0]->IsOn())
polar = 1;
else
polar = 0;
// Set hard limit to the negative version of what it was before
if( (vHardlimit->widgetNE[0]->GetNumber() > 0.) && (polar == 1) )
newHardlimit = -(vHardlimit->widgetNE[0]->GetNumber());
else if( (vHardlimit->widgetNE[0]->GetNumber() < 0.) && (polar == 0) )
newHardlimit = -(vHardlimit->widgetNE[0]->GetNumber());
else if(vHardlimit->widgetNE[0]->GetNumber() == 0.)
newHardlimit = 0.;
else
newHardlimit = vHardlimit->widgetNE[0]->GetNumber();
// Apropriately set the limit to the output voltage number entry
vHardlimit->widgetNE[0]->SetNumber(newHardlimit);
if(polar == 1)
vOut->widgetNE[0]->SetLimits(TGNumberFormat::kNELLimitMinMax, newHardlimit, 0.);
else if(polar == 0)
vOut->widgetNE[0]->SetLimits(TGNumberFormat::kNELLimitMinMax, 0., newHardlimit);
}
// Set, get, home or reset the table position
void TGAppMainFrame::PositionSet(int opt)
{
char cmd[1024];
// Set the selected table position
if(opt == 0)
{
int positX, positY, positZ;
if(posUnits->widgetCB->GetSelected() == 0)
{
positX = xPos->widgetNE[0]->GetNumber();
positY = yPos->widgetNE[0]->GetNumber();
positZ = zPos->widgetNE[0]->GetNumber();
}
else if(posUnits->widgetCB->GetSelected() == 1)
{
positX = (int)xPos->widgetNE[0]->GetNumber()/lenconversion;
positY = (int)yPos->widgetNE[0]->GetNumber()/lenconversion;
positZ = (int)zPos->widgetNE[0]->GetNumber()/lenconversion;
}
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 1 -c m", rootdir, positX, rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 2 -c m", rootdir, positY, rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 3 -c m", rootdir, positZ, rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
}
// Get current table position
else if(opt == 1)
{
fflush(stdout);
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -p > %s/settings/curpos.txt", rootdir, rootdir); // X-axis
fflush(stdout);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -p >> %s/settings/curpos.txt", rootdir, rootdir); // Y-axis
fflush(stdout);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -p >> %s/settings/curpos.txt", rootdir, rootdir); // Z-axis
fflush(stdout);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
#if WORKSTAT == 'I'
FILE* fpos;
int itemp;
sprintf(cmd, "%s/settings/curpos.txt", rootdir);
fpos = fopen(cmd, "r");
if(fpos != NULL)
{
if(posUnits->widgetCB->GetSelected() == 0)
{
retTemp = fscanf(fpos, "%d\n", &itemp);
xPos->widgetNE[0]->SetNumber(itemp);
retTemp = fscanf(fpos, "%d\n", &itemp);
yPos->widgetNE[0]->SetNumber(itemp);
retTemp = fscanf(fpos, "%d\n", &itemp);
zPos->widgetNE[0]->SetNumber(itemp);
}
else if(posUnits->widgetCB->GetSelected() == 1)
{
retTemp = fscanf(fpos, "%d\n", &itemp);
xPos->widgetNE[0]->SetNumber((double)itemp*lenconversion);
retTemp = fscanf(fpos, "%d\n", &itemp);
yPos->widgetNE[0]->SetNumber((double)itemp*lenconversion);
retTemp = fscanf(fpos, "%d\n", &itemp);
zPos->widgetNE[0]->SetNumber((double)itemp*lenconversion);
}
}
fclose(fpos);
#endif
}
// Home the table position
else if(opt == 2)
{
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -h", rootdir); // X-axis
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -h", rootdir); // Y-axis
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -h", rootdir); // Z-axis
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
PositionSet(1);
}
// Reset the table position
else if(opt == 3)
{
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -r && sudo %s/src/MIKRO/mikro_ctrl -n 1 -i 3 && sudo %s/src/MIKRO/mikro_ctrl -n 1 -h", rootdir, rootdir, rootdir); // X-axis
#if WORKSTAT == 'I'
printf("Positioning table reset, initialization and homing in progress. Please wait...\n");
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -r && sudo %s/src/MIKRO/mikro_ctrl -n 2 -i 3 && sudo %s/src/MIKRO/mikro_ctrl -n 2 -h", rootdir, rootdir, rootdir); // Y-axis
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -r && sudo %s/src/MIKRO/mikro_ctrl -n 3 -i 3 && sudo %s/src/MIKRO/mikro_ctrl -n 3 -h", rootdir, rootdir, rootdir); // Z-axis
#if WORKSTAT == 'I'
retTemp = system(cmd);
printf("Positioning table reset, initialization and homing complete.\n");
#else
printf("Cmd: %s\n",cmd);
#endif
PositionSet(1);
}
}
// Set, get, home or reset the rotation platform
void TGAppMainFrame::RotationSet(int opt)
{
char cmd[1024];
// Set the selected rotation
if(opt == 0)
{
int positAlpha;
if(rotUnits->widgetCB->GetSelected() == 0)
positAlpha = rotPos->widgetNE[0]->GetNumber();
else if(rotUnits->widgetCB->GetSelected() == 1)
positAlpha = rotPos->widgetNE[0]->GetNumber()/rotconversion;
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 4 -c m", rootdir, positAlpha, rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
}
// Get current rotation
else if(opt == 1)
{
fflush(stdout);
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -p > %s/settings/currot.txt", rootdir, rootdir);
fflush(stdout);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
#if WORKSTAT == 'I'
FILE* frot;
int itemp;
sprintf(cmd, "%s/settings/currot.txt", rootdir);
frot = fopen(cmd, "r");
if(frot != NULL)
{
retTemp = fscanf(frot, "%d\n", &itemp);
if(rotUnits->widgetCB->GetSelected() == 0)
rotPos->widgetNE[0]->SetNumber(itemp);
else if(rotUnits->widgetCB->GetSelected() == 1)
rotPos->widgetNE[0]->SetNumber((double)itemp*rotconversion);
}
fclose(frot);
#endif
}
// Home the rotation
else if(opt == 2)
{
// TODO: For now only set back to 0, not home!
// sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -h", rootdir);
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -v 0 -s la && %s/src/MIKRO/mikro_ctrl -n 4 -c m", rootdir, rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
RotationSet(1);
}
// Reset the rotation
else if(opt == 3)
{
// TODO: For now only set back to 0, not home!
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -r && sudo %s/src/MIKRO/mikro_ctrl -n 4 -i 2 && sudo %s/src/MIKRO/mikro_ctrl -n 4 -h", rootdir, rootdir, rootdir);
#if WORKSTAT == 'I'
printf("Rotation platform reset, initalization and homing in progress. Please wait...\n");
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -v 0 -s la && %s/src/MIKRO/mikro_ctrl -n 4 -c m", rootdir, rootdir);
retTemp = system(cmd);
sleep(15); // wait for the motor to change position from wherever to 0
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -r && sudo %s/src/MIKRO/mikro_ctrl -n 4 -i 2", rootdir, rootdir);
retTemp = system(cmd);
printf("Rotation platform reset, initalization and homing complete.\n");
#else
printf("Cmd: %s\n",cmd);
#endif
RotationSet(1);
}
}
// File browser for selecting the save file
void TGAppMainFrame::SaveFile()
{
TGFileInfo file_info;
const char *filetypes[] = {"Histograms",histextall,0,0};
char *cTemp;
file_info.fFileTypes = filetypes;
cTemp = new char[1024];
sprintf(cTemp, "%s/results", rootdir);
file_info.fIniDir = StrDup(cTemp);
new TGFileDialog(gClient->GetDefaultRoot(), fMain, kFDSave, &file_info);
delete[] cTemp;
if(file_info.fFilename != NULL)
fileName->widgetTE->SetText(file_info.fFilename);
}
// Start the acquisition
void TGAppMainFrame::StartAcq()
{
// Variable that will initialize camac only once (for scans)
int scanon = 0;
// Determine the type of measurement to perform
int vscan = 0, pscan = 0, zscan = 0, ascan = 0;
if(scansOn->widgetChBox[0]->IsDown()) vscan = 1;
if(scansOn->widgetChBox[1]->IsDown()) pscan = 1;
if(scansOn->widgetChBox[2]->IsDown()) zscan = 1;
if(scansOn->widgetChBox[3]->IsDown()) ascan = 1;
char cmd[256];
int i, j, k;
float progVal;
FILE *pfin;
// Variables for voltage scan
float currentVoltage, minVoltage, maxVoltage, stepVoltage;
int repetition;
// Variables for surface scan and Z axis scan
float minXpos, maxXpos, stepXpos;
float minYpos, maxYpos, stepYpos;
float minZpos, maxZpos, stepZpos;
int repetX, repetY, repetZ;
// Variables for angle scan
float currentAlpha, minAlpha, maxAlpha, stepAlpha;
int repetAlpha;
// Only voltage scan
if( (vscan == 1) && (pscan == 0) && (ascan == 0) )
{ // TODO - include possibility to make voltage and angle scan at same time
// If already started, stop the acquisition
if(acqStarted)
{
printf("Stopping current voltage scan...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
// Write information to the finish_sig.txt value
sprintf(cmd, "%s/dbg/finish_sig.txt", rootdir);
pfin = fopen(cmd,"w");
fprintf(pfin, "%s: Voltage scan stopped.", timeStamp->widgetTE->GetText());
fclose(pfin);
}
// If stopped, start the acquisition
else if(!acqStarted)
{
printf("Running a voltage scan...\n");
// Check the steps
minVoltage = vOutStart->widgetNE[0]->GetNumber();
maxVoltage = vOutStop->widgetNE[0]->GetNumber();
stepVoltage = vOutStep->widgetNE[0]->GetNumber();
if(stepVoltage == 0.)
repetition = 1;
else
{
// Example: min = 40, max = 70, step = 5 (in increasing steps)
if( (maxVoltage > minVoltage) && (stepVoltage > 0) )
repetition = ((maxVoltage - minVoltage)/stepVoltage)+1;
// Example: min = 70, max = 40, step = -5 (in decreasing steps)
else if( (maxVoltage < minVoltage) && (stepVoltage < 0) )
repetition = ((minVoltage - maxVoltage)/stepVoltage)-1;
// Example: min = 70, max = 70 (no scan)
else if( maxVoltage == minVoltage )
repetition = 1;
// If step is not correctly set, stop the acqusition
else
{
// TODO
printf("Stopping current voltage scan...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
repetition = 0;
}
}
if(DBGSIG) printf("StartAcq(): Voltage repetition (%lf,%lf,%lf) = %d\n", minVoltage, maxVoltage, stepVoltage, repetition);
i = 0;
// TODO - Setting button text and acqStarted do not work!
measProgress->widgetTB[0]->SetText("Stop acquisition");
acqStarted = true;
progVal = 0.00;
measProgress->widgetPB->SetPosition(progVal);
gVirtualX->Update(1);
clkt0 = clock();
timet0 = time(NULL);
while(1)
{
if( (repetition > 0) && (i == repetition) ) break;
else if( (repetition < 0) && (i == -repetition) ) break;
else if( repetition == 0 ) break;
progVal = (float)(100.00/abs(repetition))*i;
measProgress->widgetPB->SetPosition(progVal);
TimeEstimate(clkt0, timet0, progVal, cmd, singlewait*abs(repetition));
measProgress->widgetTE->SetText(cmd);
gVirtualX->Update(1);
fflush(stdout);
currentVoltage = minVoltage + stepVoltage*i;
sprintf(cmd, "%s/src/mpod/mpod_voltage.sh -o %d -v %f -s 1", rootdir, GetChannel(), currentVoltage);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
printf("Waiting for voltage change...\n");
sleep(singlewait);
vOut->widgetNE[0]->SetNumber(currentVoltage);
gVirtualX->Update(1);
printf("Continuing...\n");
// Here comes function to start histogramming <<<<<<<<<<<<<<<<<<<<<<<<
RunMeas((void*)0, i, scanon); // TODO
fflush(stdout);
i++;
}
// Set output back to off
fflush(stdout);
printf("Measurement finished, returning to starting voltage...\n");
sprintf(cmd, "%s/src/mpod/mpod_voltage.sh -o %d -v %f -s 1", rootdir, GetChannel(), minVoltage);
vOut->widgetNE[0]->SetNumber(minVoltage);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
progVal = 100.00;
measProgress->widgetPB->SetPosition(progVal);
printf("\n");
sprintf(cmd, "%s/dbg/finish_sig.txt", rootdir);
pfin = fopen(cmd,"w");
fprintf(pfin, "%s: Voltage scan finished.", timeStamp->widgetTE->GetText());
fclose(pfin);
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
}
}
// Surface scan
else if( (pscan == 1) && (vscan == 0) && (ascan == 0) )
{
// If already started, stop the acquisition
if(acqStarted)
{
printf("Stopping current surface scan...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
// Write information to the finish_sig.txt value
sprintf(cmd, "%s/dbg/finish_sig.txt", rootdir);
pfin = fopen(cmd,"w");
fprintf(pfin, "%s: Surface scan stopped.", timeStamp->widgetTE->GetText());
fclose(pfin);
}
// If stopped, start the acquisition
else if(!acqStarted)
{
printf("Running a surface scan...\n");
minXpos = xPosMin->widgetNE[0]->GetNumber();
maxXpos = xPosMax->widgetNE[0]->GetNumber();
stepXpos = xPosStep->widgetNE[0]->GetNumber();
minYpos = yPosMin->widgetNE[0]->GetNumber();
maxYpos = yPosMax->widgetNE[0]->GetNumber();
stepYpos = yPosStep->widgetNE[0]->GetNumber();
minZpos = zPosMin->widgetNE[0]->GetNumber();
maxZpos = zPosMax->widgetNE[0]->GetNumber();
stepZpos = zPosStep->widgetNE[0]->GetNumber();
// Setting repetition for Z axis scan
if(zscan == 1)
{
if(stepZpos == 0.)
repetZ = 1;
else
{
// Example: min = 40, max = 70, step = 5 (in increasing steps)
if( (maxZpos > minZpos) && (stepZpos > 0) )
repetZ = ((maxZpos - minZpos)/stepZpos)+1;
// Example: min = 70, max = 40, step = -5 (in decreasing steps)
else if( (maxZpos < minZpos) && (stepZpos < 0) )
repetZ = ((minZpos - maxZpos)/stepZpos)-1;
// Example: min = 70, max = 70 (no scan)
else if( maxZpos == minZpos )
repetZ = 1;
// If step is not correctly set, stop the acqusition
else
{
// TODO
printf("Stopping current surface scan (Z step error)...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
repetZ = 0;
}
}
}
else
{
minZpos = zPos->widgetNE[0]->GetNumber();
repetZ = 1;
}
// Setting repetition for X axis
if(stepXpos == 0.)
repetX = 1;
else
{
// Example: min = 40, max = 70, step = 5 (in increasing steps)
if( (maxXpos > minXpos) && (stepXpos > 0) )
repetX = ((maxXpos - minXpos)/stepXpos)+1;
// Example: min = 70, max = 40, step = -5 (in decreasing steps)
else if( (maxXpos < minXpos) && (stepXpos < 0) )
repetX = ((minXpos - maxXpos)/stepXpos)-1;
// Example: min = 70, max = 70 (no scan)
else if( maxXpos == minXpos )
repetX = 1;
// If step is not correctly set, stop the acqusition
else
{
// TODO
printf("Stopping current surface scan (X step error)...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
repetX = 0;
}
}
// Setting repetition for Y axis
if(stepYpos == 0.)
repetY = 1;
else
{
// Example: min = 40, max = 70, step = 5 (in increasing steps)
if( (maxYpos > minYpos) && (stepYpos > 0) )
repetY = ((maxYpos - minYpos)/stepYpos)+1;
// Example: min = 70, max = 40, step = -5 (in decreasing steps)
else if( (maxYpos < minYpos) && (stepYpos < 0) )
repetY = ((minYpos - maxYpos)/stepYpos)-1;
// Example: min = 70, max = 70 (no scan)
else if( maxYpos == minYpos )
repetY = 1;
// If step is not correctly set, stop the acqusition
else
{
// TODO
printf("Stopping current surface scan (Y step error)...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
repetY = 0;
}
}
if(DBGSIG) printf("StartAcq(): X axis repetition (%lf,%lf,%lf) = %d\n", minXpos, maxXpos, stepXpos, repetX);
if(DBGSIG) printf("StartAcq(): Y axis repetition (%lf,%lf,%lf) = %d\n", minYpos, maxYpos, stepYpos, repetY);
if(DBGSIG) printf("StartAcq(): Z axis repetition (%lf,%lf,%lf) = %d\n", minZpos, maxZpos, stepZpos, repetZ);
i = 0; j = 0; k = 0;
// TODO - Setting button text and acqStarted do not work!
measProgress->widgetTB[0]->SetText("Stop acquisition");
acqStarted = true;
progVal = 0.00;
measProgress->widgetPB->SetPosition(progVal);
gVirtualX->Update(1);
clkt0 = clock();
timet0 = time(NULL);
// Scan over Z axis
while(1)
{
if( (repetZ > 0) && (k == repetZ) ) break;
else if( (repetZ < 0) && (k == -repetZ) ) break;
else if( repetZ == 0 ) break;
fflush(stdout);
// Z-axis change
if( posUnits->widgetCB->GetSelected() == 0)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 3 -c m", rootdir, (int)(minZpos + stepZpos*k), rootdir);
else if( posUnits->widgetCB->GetSelected() == 1)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 3 -c m", rootdir, (int)((minZpos + stepZpos*k)/lenconversion), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
printf("Next Z position...\n");
sleep(2*doublewait);
zPos->widgetNE[0]->SetNumber(minZpos + stepZpos*k);
fflush(stdout);
// Scan over Y axis
while(1)
{
if( (repetY > 0) && (j == repetY) ) break;
else if( (repetY < 0) && (j == -repetY) ) break;
else if( repetY == 0 ) break;
fflush(stdout);
// Y-axis change
if( posUnits->widgetCB->GetSelected() == 0)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 2 -c m", rootdir, (int)(minYpos + stepYpos*j), rootdir);
else if( posUnits->widgetCB->GetSelected() == 1)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 2 -c m", rootdir, (int)((minYpos + stepYpos*j)/lenconversion), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
printf("Next Y position...\n");
sleep(2*doublewait);
yPos->widgetNE[0]->SetNumber(minYpos + stepYpos*j);
fflush(stdout);
// Scan over X axis
while(1)
{
if( (repetX > 0) && (i == repetX) ) break;
else if( (repetX < 0) && (i == -repetX) ) break;
else if( repetX == 0 ) break;
progVal = (float)(100.00/(abs(repetX)*abs(repetY)*abs(repetZ)))*(k*abs(repetX)*abs(repetY) + j*abs(repetX) + i);
measProgress->widgetPB->SetPosition(progVal);
TimeEstimate(clkt0, timet0, progVal, cmd, doublewait*((abs(repetX)+2)*abs(repetY)+2)*abs(repetZ));
measProgress->widgetTE->SetText(cmd);
gVirtualX->Update(1);
// X-axis change
if( posUnits->widgetCB->GetSelected() == 0)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 1 -c m", rootdir, (int)(minXpos + stepXpos*i), rootdir);
else if( posUnits->widgetCB->GetSelected() == 1)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 1 -c m", rootdir, (int)((minXpos + stepXpos*i)/lenconversion), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
printf("Next X position...\n");
fflush(stdout);
printf("Waiting for position change...\n");
sleep(doublewait);
xPos->widgetNE[0]->SetNumber(minXpos + stepXpos*i);
printf("Continuing...\n");
// Here comes function to start histogramming <<<<<<<<<<<<<<<<<<<<<<<<
RunMeas((void*)0, (j*repetX + i), scanon);
fflush(stdout);
i++;
}
i = 0;
printf("\n");
j++;
}
j = 0;
k++;
}
printf("Time = %d\n", (int)time(NULL));
fflush(stdout);
printf("Measurement finished, returning to starting position...\n");
// X-axis return
if( posUnits->widgetCB->GetSelected() == 0)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 1 -c m", rootdir, (int)minXpos, rootdir);
else if( posUnits->widgetCB->GetSelected() == 1)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 1 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 1 -c m", rootdir, (int)(minXpos/lenconversion), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
// Y-axis return
if( posUnits->widgetCB->GetSelected() == 0)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 2 -c m", rootdir, (int)minYpos, rootdir);
else if( posUnits->widgetCB->GetSelected() == 1)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 2 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 2 -c m", rootdir, (int)(minYpos/lenconversion), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
// Z-axis return
if( posUnits->widgetCB->GetSelected() == 0)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 3 -c m", rootdir, (int)minZpos, rootdir);
else if( posUnits->widgetCB->GetSelected() == 1)
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 3 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 3 -c m", rootdir, (int)(minZpos/lenconversion), rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
xPos->widgetNE[0]->SetNumber(minXpos);
yPos->widgetNE[0]->SetNumber(minYpos);
zPos->widgetNE[0]->SetNumber(minZpos);
progVal = 100.00;
measProgress->widgetPB->SetPosition(progVal);
printf("\n");
// Write information to the finish_sig.txt value
sprintf(cmd, "%s/dbg/finish_sig.txt", rootdir);
pfin = fopen(cmd,"w");
fprintf(pfin, "%s: Surface scan finished.", timeStamp->widgetTE->GetText());
fclose(pfin);
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
}
}
// Only angle scan
if( (ascan == 1) && (pscan == 0) && (vscan == 0) )
{
// If already started, stop the acquisition
if(acqStarted)
{
printf("Stopping current angle scan...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
// Write information to the finish_sig.txt value
sprintf(cmd, "%s/dbg/finish_sig.txt", rootdir);
pfin = fopen(cmd,"w");
fprintf(pfin, "%s: Angle scan stopped.", timeStamp->widgetTE->GetText());
fclose(pfin);
}
// If stopped, start the acquisition
else if(!acqStarted)
{
printf("Running an incidence angle scan...\n");
// Check the steps
minAlpha = rotPosMin->widgetNE[0]->GetNumber();
maxAlpha = rotPosMax->widgetNE[0]->GetNumber();
stepAlpha = rotPosStep->widgetNE[0]->GetNumber();
if(stepAlpha == 0.)
repetAlpha = 1;
else
{
// Example: min = 40, max = 70, step = 5 (in increasing steps)
if( (maxAlpha > minAlpha) && (stepAlpha > 0) )
repetAlpha = ((maxAlpha - minAlpha)/stepAlpha)+1;
// Example: min = 70, max = 40, step = -5 (in decreasing steps)
else if( (maxAlpha < minAlpha) && (stepAlpha < 0) )
repetAlpha = ((minAlpha - maxAlpha)/stepAlpha)-1;
// Example: min = 70, max = 70 (no scan)
else if( maxAlpha == minAlpha )
repetAlpha = 1;
// If step is not correctly set, stop the acqusition
else
{
// TODO
printf("Stopping current incidence angle scan...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
repetAlpha = 0;
}
}
if(DBGSIG) printf("StartAcq(): Angle repetition (%lf,%lf,%lf) = %d\n", minAlpha, maxAlpha, stepAlpha, repetAlpha);
int angleWait = TMath::Ceil(abs(rotPos->widgetNE[0]->GetNumber()-minAlpha)*15/(rotPos->widgetNE[0]->GetNumMax()));
if(rotUnits->widgetCB->GetSelected() == 1)
{
minAlpha = minAlpha/rotconversion;
maxAlpha = maxAlpha/rotconversion;
stepAlpha = stepAlpha/rotconversion;
}
i = 0;
// TODO - Setting button text and acqStarted do not work!
measProgress->widgetTB[0]->SetText("Stop acquisition");
acqStarted = true;
progVal = 0.00;
measProgress->widgetPB->SetPosition(progVal);
gVirtualX->Update(1);
clkt0 = clock();
timet0 = time(NULL);
// Setting angle to initial position
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 4 -c m", rootdir, (int)minAlpha, rootdir);
if(rotUnits->widgetCB->GetSelected() == 0)
rotPos->widgetNE[0]->SetNumber(minAlpha);
else if(rotUnits->widgetCB->GetSelected() == 1)
rotPos->widgetNE[0]->SetNumber(minAlpha*rotconversion);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
printf("Waiting for %ds for rotation platform to move into starting position...\n", angleWait);
sleep(angleWait);
while(1)
{
if( (repetAlpha > 0) && (i == repetAlpha) ) break;
else if( (repetAlpha < 0) && (i == -repetAlpha) ) break;
else if( repetAlpha == 0 ) break;
progVal = (float)(100.00/abs(repetAlpha))*i;
measProgress->widgetPB->SetPosition(progVal);
TimeEstimate(clkt0, timet0, progVal, cmd, singlewait*abs(repetAlpha));
measProgress->widgetTE->SetText(cmd);
gVirtualX->Update(1);
fflush(stdout);
currentAlpha = minAlpha + stepAlpha*i;
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 4 -c m", rootdir, (int)currentAlpha, rootdir);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
printf("Waiting for angle change...\n");
sleep(singlewait);
if(rotUnits->widgetCB->GetSelected() == 0)
rotPos->widgetNE[0]->SetNumber(currentAlpha);
else if(rotUnits->widgetCB->GetSelected() == 1)
rotPos->widgetNE[0]->SetNumber(currentAlpha*rotconversion);
gVirtualX->Update(1);
printf("Continuing...\n");
// Here comes function to start histogramming <<<<<<<<<<<<<<<<<<<<<<<<
RunMeas((void*)0, i, scanon); // TODO
fflush(stdout);
i++;
}
// Set angle back to original position
fflush(stdout);
printf("Measurement finished, returning to starting incidence angle...\n");
sprintf(cmd, "sudo %s/src/MIKRO/mikro_ctrl -n 4 -v %d -s la && %s/src/MIKRO/mikro_ctrl -n 4 -c m", rootdir, (int)minAlpha, rootdir);
if(rotUnits->widgetCB->GetSelected() == 0)
rotPos->widgetNE[0]->SetNumber(minAlpha);
else if(rotUnits->widgetCB->GetSelected() == 1)
rotPos->widgetNE[0]->SetNumber(minAlpha*rotconversion);
#if WORKSTAT == 'I'
retTemp = system(cmd);
#else
printf("Cmd: %s\n",cmd);
#endif
fflush(stdout);
progVal = 100.00;
measProgress->widgetPB->SetPosition(progVal);
printf("\n");
sprintf(cmd, "%s/dbg/finish_sig.txt", rootdir);
pfin = fopen(cmd,"w");
fprintf(pfin, "%s: Incidence angle scan finished.", timeStamp->widgetTE->GetText());
fclose(pfin);
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
}
}
// Normal single measurement
else if( (vscan == 0) && (pscan == 0) && (ascan == 0) )
{
// Set the start button to stop and enable stopping of measurement
if(acqStarted)
{
printf("Stopping current single scan...\n");
gROOT->SetInterrupt();
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
}
else if(!acqStarted)
{
measProgress->widgetTB[0]->SetText("Stop acquisition");
acqStarted = true;
printf("Running a single scan...\n");
clkt0 = clock();
timet0 = time(NULL);
RunMeas((void*)0, 0, scanon);
printf("Measurement finished...\n");
printf("\n");
measProgress->widgetTB[0]->SetText("Start acquisition");
acqStarted = false;
}
}
}
// Main measurement window connections ----------------------
// Histogram file selection pane connections ----------------
// File browser for opening histograms
void TGAppMainFrame::SelectDirectory()
{
int i = fileList->GetNumberOfEntries();
// char *cTemp;
TGFileInfo file_info;
const char *filetypes[] = {"Histograms",histextall,0,0};
file_info.fFileTypes = filetypes;
// cTemp = new char[1024];
// sprintf(cTemp, "%s/results", rootdir);
// file_info.fIniDir = StrDup(cTemp);
file_info.fIniDir = StrDup(currentOpenDir);
file_info.fMultipleSelection = kTRUE;
new TGFileDialog(gClient->GetDefaultRoot(), fMain, kFDOpen, &file_info);
// delete[] cTemp;
TList *files = file_info.fFileNamesList;
if(files)
{
TSystemFile *file;
TString fname;
TIter next(files);
while(file=(TSystemFile*)next())
{
fname = file->GetName();
remove_from_last((char*)fname.Data(), '/', currentOpenDir);
fileList->AddEntry(fname.Data(), i);
i++;
}
}
fileList->Layout();
}
// Toggle multiple selection in filelist or delete all entries
void TGAppMainFrame::ListMultiSelect(int opt)
{
// Enable multiselect
if(opt == 0)
{
fileList->SetMultipleSelections((multiSelect->widgetChBox[0]->IsOn()));
if(multiSelect->widgetChBox[1]->IsDown())
multiSelect->widgetChBox[1]->SetState(kButtonUp);
}
else if(opt == 1)
{
if(multiSelect->widgetChBox[1]->IsDown())
{
multiSelect->widgetChBox[0]->SetState(kButtonDown);
fileList->SetMultipleSelections((multiSelect->widgetChBox[0]->IsOn()));
for(int i = 0; i < fileList->GetNumberOfEntries(); i++)
fileList->Select(i,kTRUE);
}
else if(!multiSelect->widgetChBox[1]->IsDown())
{
multiSelect->widgetChBox[0]->SetState(kButtonUp);
fileList->SetMultipleSelections((multiSelect->widgetChBox[0]->IsOn()));
for(int i = 0; i < fileList->GetNumberOfEntries(); i++)
fileList->Select(i,kFALSE);
}
}
}
// Navigation buttons for the filelist (<<, >>) and double click
void TGAppMainFrame::FileListNavigation(int opt)
{
unsigned int nrfiles = fileList->GetNumberOfEntries();
int curSel;
TList *files;
if( nrfiles > 0 )
{
if(opt < -1)
{
// turn off multiple selection and select first file on list
if(multiSelect->widgetChBox[0]->IsOn())
{
fileList->SetMultipleSelections(kFALSE);
multiSelect->widgetChBox[0]->SetState(kButtonUp);
multiSelect->widgetChBox[1]->SetState(kButtonUp);
fileList->Select(0,kTRUE);
}
else
{
// if nothing is selected, curSel will be -1
curSel = fileList->GetSelected();
// go to next file on list
if(opt == -3)
{
if( (curSel == (int)(nrfiles-1)) || (curSel == -1) )
fileList->Select(0);
else
fileList->Select(curSel+1);
}
// go to previous file on list
else if(opt == -2)
{
if( (curSel == 0) || (curSel == -1) )
fileList->Select(nrfiles-1);
else
fileList->Select(curSel-1);
}
}
}
}
UpdateHistogram(0);
}
// Open the header edit window when pressing on editHeader button
void TGAppMainFrame::HeaderEdit()
{
bool createTab = true;
int tabid = -1;
for(int i = 0; i < fTab->GetNumberOfTabs(); i++)
{
if(strcmp("File header editor", fTab->GetTabTab(i)->GetString() ) == 0)
{
createTab = false;
tabid = i;
}
if(DBGSIG > 1) printf("HeaderEdit(): Name of tab = %s\n", fTab->GetTabTab(i)->GetString() );
}
unsigned int nrfiles = fileList->GetNumberOfEntries();
if(nrfiles > 0)
HeaderEditTab(fTab, createTab, &tabid);
}
// Clear the histogram file selection list and dark run analysis selection
void TGAppMainFrame::ClearHistogramList()
{
fileList->RemoveAll();
darkRun->widgetTE->Clear();
}
// Histogram file selection pane connections ----------------
// Histogram controls pane connections ----------------------
// Readjust the histogram range after changing ADC, TDC, Y range or logarithmic scale (opt: 0 = normal redraw, 1 = export, 2 = redraw when changing which channel to display)
void TGAppMainFrame::UpdateHistogram(int opt)
{
if(DBGSIG > 1)
{
printf("UpdateHistogram(): Clearing the TList\n");
gDirectory->GetList()->Delete();
gObjectTable->Print();
}
// Do not do normal histogram update if we have multiple files selected
if( (opt == 0) && (multiSelect->widgetChBox[0]->IsDown()) )
{
printf("UpdateHistogram(): To preview changes done to a histogram, please deselect the \"Multiple files select\" option.");
return;
}
// Do not update histogram if we are on the same channel
if( ((opt == 2) && (selChannel != (int)selectCh->widgetNE[0]->GetNumber())) || (opt < 2) )
{
unsigned int nrfiles = fileList->GetNumberOfEntries();
TCanvas *gCanvas;
char exportname[512];
char cTemp[512];
if(opt == 1)
gCanvas = analysisCanvas->GetCanvas();
if(nrfiles > 0)
{
TList *files;
files = new TList();
fileList->GetSelectedEntries(files);
if(files)
{
for(int i = 0; i < (int)nrfiles; i++)
{
if(files->At(i))
{
if(DBGSIG)
printf("UpdateHistogram(): Filename: %s\n", files->At(i)->GetTitle());
if(opt == 1)
remove_ext((char*)files->At(i)->GetTitle(), cTemp);
if( fMenuHisttype->IsEntryChecked(M_ANALYSIS_HISTTYPE_1DADC) )
{
sprintf(exportname, "%s_adc%d.pdf", cTemp, (int)selectCh->widgetNE[0]->GetNumber());
DisplayHistogram( (char*)(files->At(i)->GetTitle()), 0, opt);
}
else if( fMenuHisttype->IsEntryChecked(M_ANALYSIS_HISTTYPE_1DTDC) )
{
sprintf(exportname, "%s_tdc%d.pdf", cTemp, (int)selectCh->widgetNE[0]->GetNumber());
DisplayHistogram( (char*)(files->At(i)->GetTitle()), 1, opt);
}
else if( fMenuHisttype->IsEntryChecked(M_ANALYSIS_HISTTYPE_2D) )
{
sprintf(exportname, "%s_adctdc%d.pdf", cTemp, (int)selectCh->widgetNE[0]->GetNumber());
DisplayHistogram( (char*)(files->At(i)->GetTitle()), 2, opt);
}
if(opt == 1)
{
gCanvas->SaveAs(exportname);
delete inroot;
}
}
}
}
}
selChannel = selectCh->widgetNE[0]->GetNumber();
}
if(DBGSIG > 1)
{
printf("UpdateHistogram(): After drawing histograms (connections)\n");
gObjectTable->Print();
}
}
// Options for histogram (logarithmic scale, clean plots)
void TGAppMainFrame::HistogramOptions(int opt)
{
// Logarithmic scale
if(opt == 0)
UpdateHistogram(0);
// Clean plots
else if(opt == 1)
{
cleanPlots = histOpt->widgetChBox[1]->IsDown();
UpdateHistogram(0);
}
}
// Changing the histogram type to display
void TGAppMainFrame::ChangeHisttype(int type)
{
TGTextButton *pressedB = new TGTextButton();
int menuID = 0;
unsigned int nrfiles = fileList->GetNumberOfEntries();
// ADC histogram
if(type == 0)
{
pressedB = plotType->widgetTB[0];
menuID = M_ANALYSIS_HISTTYPE_1DADC;
plotType->widgetTB[1]->SetDown(kFALSE);
plotType->widgetTB[2]->SetDown(kFALSE);
fMenuHisttype->UnCheckEntry(M_ANALYSIS_HISTTYPE_1DTDC);
fMenuHisttype->UnCheckEntry(M_ANALYSIS_HISTTYPE_2D);
}
// TDC histogram
else if(type == 1)
{
pressedB = plotType->widgetTB[1];
menuID = M_ANALYSIS_HISTTYPE_1DTDC;
plotType->widgetTB[0]->SetDown(kFALSE);
plotType->widgetTB[2]->SetDown(kFALSE);
fMenuHisttype->UnCheckEntry(M_ANALYSIS_HISTTYPE_1DADC);
fMenuHisttype->UnCheckEntry(M_ANALYSIS_HISTTYPE_2D);
}
// ADC vs. TDC histogram
else if(type == 2)
{
pressedB = plotType->widgetTB[2];
menuID = M_ANALYSIS_HISTTYPE_2D;
plotType->widgetTB[0]->SetDown(kFALSE);
plotType->widgetTB[1]->SetDown(kFALSE);
fMenuHisttype->UnCheckEntry(M_ANALYSIS_HISTTYPE_1DADC);
fMenuHisttype->UnCheckEntry(M_ANALYSIS_HISTTYPE_1DTDC);
}
if( fMenuHisttype->IsEntryChecked(menuID) )
{
pressedB->SetDown(kFALSE);
fMenuHisttype->UnCheckEntry(menuID);
}
else if( !fMenuHisttype->IsEntryChecked(menuID) )
{
pressedB->SetDown(kTRUE);
fMenuHisttype->CheckEntry(menuID);
}
UpdateHistogram(0);
}
// Histogram controls pane connections ----------------------