#include <stdlib.h>
#include <stdio.h>
#include <TString.h>
#include <TGraph.h>
#include <TCanvas.h>
#include <TMultiGraph.h>
#include <math.h>
int IUdraw(const char *datoteka = "C:/home/data/meritev-iv.dat"){
auto c1 = new TCanvas("c1","A Simple Graph Example",200,10,1400,1000);
double sigmaGauss = 0.3;
double xError = 0.5;
double rangeX = 5;
//c1->SetLogy();
//auto mg = new TMultiGraph();
// printf("#%s#\n", datoteka);
/*
string s = datoteka;
s.erase(s.find_last_of("."), string::npos);
fprintf(stderr,"%s\n", s.c_str());
std::string key ("/");
string ime;
std::size_t found = s.rfind(key);
if (found!=std::string::npos) {
ime = s.substr(found+1,s.length());
}
*/
TString ime = gSystem->BaseName(datoteka);
TString path = gSystem->DirName(datoteka);
ime.Remove(ime.Index(".dat"));
fprintf(stderr,"Ime=%s\n", ime.Data());
TString formatted = path + TString("/") + ime; // + TString(".png");
//formatted.Form("%s.png", );
fprintf(stderr,"png=%s\n", formatted.Data());
TString formattedGraph1;
TString formattedGraph2;
TString formattedGraph3;
TString formattedGraph4;
TString formattedGraph5;
TString formatted1;
TString formatted2;
TString formatted3;
TString formatted4;
TString formatted5;
for (Int_t d = 0; d<1; d++) {
FILE * fp=fopen(datoteka,"r");
if (!fp) continue;
float f[4];
Int_t j=0;
Int_t ndim=400;
char line[400];
double fpXX[250];
double fpYY[250];
// Int_t k = 0;
while (fgets(line,ndim,fp)!=NULL) {
if (line[0] == '#') continue;
sscanf(line,"%f%f%f%f",&f[0],&f[1],&f[2],&f[3]);
// printf("%f %f %f %f \n",f[0],f[1],f[2],f[3]);
fpXX[j]=f[2];
fpYY[j]=f[3];
j++;
}
// float *fpx = new float[j+1];
// float *fpy = new float[j+1];
// for (Int_t i=0; i<j-3; i++) {
// if (fpXX[i]!= 0) {
// k++;
// fpx[i]=fpXX[i+2];
// fpy[i]=fpYY[i+2];
// printf("%2.6f\t",fpx[i]);
// printf("\n");
// printf("%2.6f\t",fpy[i]);
// printf("\n");
// }
// }
fclose(fp);
auto graf11 = new TGraph();
graf11->SetMarkerStyle(20);
graf11->SetDrawOption("AP");
graf11->SetLineWidth(3);
graf11->SetFillStyle(0);
auto graf12 = new TGraph();
graf12->SetMarkerStyle(20);
graf12->SetDrawOption("AP");
graf12->SetLineWidth(3);
graf12->SetFillStyle(0);
auto graf2 = new TGraph();
graf2->SetMarkerStyle(20);
graf2->SetDrawOption("AP");
graf2->SetLineWidth(3);
graf2->SetFillStyle(0);
auto graf3 = new TGraph();
graf3->SetMarkerStyle(20);
graf3->SetDrawOption("AP");
graf3->SetLineWidth(3);
graf3->SetFillStyle(0);
auto graf4 = new TGraph();
graf4->SetMarkerStyle(20);
graf4->SetDrawOption("AP");
graf4->SetLineWidth(3);
graf4->SetFillStyle(0);
auto graf5 = new TGraph();
graf5->SetMarkerStyle(20);
graf5->SetDrawOption("AP");
graf5->SetLineWidth(3);
graf5->SetFillStyle(0);
for (int i=0; i<j; i++) {
if (fpYY[i]<=0) fpYY[i] = 1e-12;
graf11->SetPoint(i,fpXX[i],log(fpYY[i]));
graf12->SetPoint(i,fpXX[i],log(fpYY[i]));
graf5->SetPoint(i,log(fpYY[i]),fpXX[i]);
}
double max2 = 0;
double max2x = 0;
int k = 0;
for (int i=0; i<j-1; i++) {
if (fpYY[i]<=0) fpYY[i] = 1e-12;
double x2 = (fpXX[i+1]+fpXX[i])/2;
double y2 = (log(fpYY[i+1])-log(fpYY[i]))/(fpXX[i+1]-fpXX[i]);
graf2->SetPoint(i,x2, y2);
if (y2 > 1.1) {
double y3 = 1 / y2;
graf3->SetPoint(k,x2, y3);
k++;
}
if (y2 > max2) {
max2 = y2;
max2x = x2;
}
}
double max4 = 0;
double max4x = 0;
double x4stari = 0;
double y4stari = 0;
double x4novi = 0;
double y4novi = 0;
for (int i=0; i<j-2; i++) {
if (fpYY[i]<=0) fpYY[i] = 1e-12;
double x4 = (fpXX[i+2]+fpXX[i])/4+fpXX[i+1]/2;
double y4 = ((log(fpYY[i+2])-log(fpYY[i+1]))/(fpXX[i+2]-fpXX[i+1]) - (log(fpYY[i+1])-log(fpYY[i]))/(fpXX[i+1]-fpXX[i]))/((fpXX[i+2]-fpXX[i])/2);
if (i==0) {
x4novi = x4;
y4novi = y4;
}
else {
x4novi = (x4 + x4stari)/2;
y4novi = (y4 + y4stari)/2;
}
graf4->SetPoint(i,x4novi, y4novi);
x4stari = x4;
y4stari = y4;
if (y4 > max4) {
max4 = y4;
max4x = x4;
}
}
}
TF1 *fa1 = new TF1("fa1","pol1",61,67);
fa1->SetParameters(-28.4467,0.0875386);
graf11->Fit("fa1", "R");
graf11->Draw("APL");
c1->Update();
TF1 *fa2 = new TF1("fa2","pol1",69.7,70.1);
graf11->Fit("fa2", "R+");
//graf12->Draw("APL");
printf("p0=%e, p1=%e\n", fa1->GetParameter(0), fa1->GetParameter(1));
double par0 = fa1->GetParameter(0);
double par1 = fa1->GetParameter(1);
printf("p2=%e, p3=%e\n", fa2->GetParameter(0), fa2->GetParameter(1));
double par2 = fa2->GetParameter(0);
double par3 = fa2->GetParameter(1);
double x1 = (par0 - par2)/(par3 - par1);
formattedGraph1.Form("I ( V ) -> %s, V(1) = %f ; V [V]; ln(I) [A]", ime.Data(), x1);
graf11->SetTitle(formattedGraph1);
graf12->SetTitle(formattedGraph1);
//graf13->Draw("APL");
formatted1.Form("%s-1.png", formatted.Data());
c1->SaveAs(formatted1);
auto c2 = new TCanvas("c2","A Simple Graph Example",200,10,1400,1000);
graf2->Draw("APL");
graf2->GetXaxis()->SetRangeUser(x1 - rangeX, x1 + rangeX);
TF1 *fa2 = new TF1("fa2","gaus(0)+pol1(3)",max2x - sigmaGauss, max2x + sigmaGauss);
fa2->SetParameters(60,x1,0.1339,0,0);
fa2->SetParLimits(1, max2x - sigmaGauss, max2x + sigmaGauss);
// fa1->SetParLimits(1, 10**(-14), 10**(-10));
graf2->Fit("fa2", "R");
// printf("p20=%e, p21=%e, p22=%e, max2x=%f\n", fa2->GetParameter(0), fa2->GetParameter(1), fa2->GetParameter(2), max2x);
// double par2 = fa2->GetParameter(2);
// double par3 = fa2->GetParameter(3);
double x2 = fa2->GetParameter(1);
formattedGraph2.Form("I ( V ) -> %s, V(2) = %f ; Voltage [V]; d(ln(I)/dV)", ime.Data(), x2);
graf2->SetTitle(formattedGraph2);
formatted2.Form("%s-2.png", formatted.Data());
gStyle->SetOptFit(1);
c2->SaveAs(formatted2);
auto c3 = new TCanvas("c3","A Simple Graph Example",200,10,1400,1000);
graf3->Draw("APL");
graf3->Fit("pol3");
graf3->GetXaxis()->SetRangeUser(x1 - rangeX, x1 + rangeX);
TF1 *fa3 = new TF1("fa3", "pol1", x2, x2 + 0.5);
fa3->SetParameters(-30.6306,0.4398);
//fa3->SetParLimits(0, 10**(-14), 10**(-10));
//fa3->SetParLimits(1, 10**(-14), 10**(-10));
graf3->Fit("fa3", "R");
double n3 = fa3->GetParameter(0);
double k3 = fa3->GetParameter(1);
double x3 = - n3 / k3;
formattedGraph3.Form("I ( V ) -> %s, V(3) = %f ; Voltage [V]; 1/(d(ln(I)/dV))", ime.Data(), x3);
graf3->SetTitle(formattedGraph3);
//printf("p30=%e, p31=%e\n", fa3->GetParameter(0), fa3->GetParameter(1));
formatted3.Form("%s-3.png", formatted.Data());
c3->SaveAs(formatted3);
auto c4 = new TCanvas("c4","A Simple Graph Example",200,10,1400,1000);
graf4->Draw("APL");
graf4->GetXaxis()->SetRangeUser(x1 - rangeX, x1 + rangeX);
TF1 *fa4 = new TF1("fa4","gaus(0)",max4x - sigmaGauss, max4x + sigmaGauss);
fa4->SetParameters(60,x2,0.1339);
fa4->SetParLimits(1, x2 - xError, x2 + xError);
fa4->SetParLimits(0, 0, 1000);
graf4->Fit("fa4", "R");
// printf("p40=%e, p41=%e, p42=%e, max4x=%f\n", fa4->GetParameter(0), fa4->GetParameter(1), fa4->GetParameter(2), max4x);
// double par2 = fa2->GetParameter(2);
// double par3 = fa2->GetParameter(3);
double x4 = fa4->GetParameter(1);
formatted4.Form("%s-4.png", formatted.Data());
// TString stringx4;
// stringx4.Form("V(4) = %f", x4);
// TText *t = new TText(60,70,stringx4);
// t->SetTextAlign(22);
// t->SetTextColor(1);
// t->SetTextFont(43);
// t->SetTextSize(20);
// t->Draw();
formattedGraph4.Form("I ( V ) -> %s, V(4) = %f ; Voltage [V]; d^2(ln(I)/dV^2)", ime.Data(), x4);
graf4->SetTitle(formattedGraph4);
gPad->Modified(); gPad->Update();
c4->SaveAs(formatted4);
auto c5 = new TCanvas("c5","A Simple Graph Example",200,10,1400,1000);
graf5->Draw("APL");
TF1 *fa5 = new TF1("fa5","-[0] - [1]*x - [2]*x**2",par0 + par1*x1 +4,par0 + par1*x1+11);
// fa5->SetParameters(28.4467,0.0875386,4);
graf5->Fit("fa5", "R+");
printf("p4=%e, p5=%e, p6=%e\n", fa5->GetParameter(0), fa5->GetParameter(1), fa5->GetParameter(2));
double par4 = fa5->GetParameter(0);
double par5 = fa5->GetParameter(1);
double par6 = fa5->GetParameter(2);
double xx5 = - (double)(par5/(2*par6));
double x5 = - par4 - par5 * xx5 - par6 * xx5**2;
// double f5(double p);
// double f5(double p) {
// double par0, par1, par4, par5, par6;
// double a=-(double)(par0/par1) + (double)(1/par1) * p + par4 + par5 * p + par6 * p**2;
// return a;
// }
// cout.precision(4);
// cout.setf(ios::fixed);
// double a5,b5,cc5,e5,faa5,fb5,fc5;
// a5 = x1-5;
// b5 = x1+5;
// e5 = 0.001;
// if (f5(a5)*f5(b5)>0) print("No root exists between a and b.\n");
// else {
// while (fabs(a5-b5)>=e5) {
// cc5=(a5+b5)/2.0; //bisect the interval and find the value of c
// faa5=f5(a5);
// fb5=f5(b5);
// fc5=f5(cc5);
// if (fc5==0) {
// printf("The root of the equation is %f \n",cc5);
// break;
// }
// if (fa5*fc5>0) a5=cc5;
// else if (fa5*fc5<0) b5=cc5;
// }
// } //The loop ends when the difference between a and b becomes less than the desired accuracy ie now the value stored in 'c' can be called the approximate root of the equation
// printf("The root of the equation is %f \n",cc5);
formattedGraph5.Form("V ( I ) -> %s, V(5) = %f ; ln(I) [A] ; V [V]", ime.Data(), x5);
graf5->SetTitle(formattedGraph5);
formatted5.Form("%s-5.png", formatted.Data());
c5->SaveAs(formatted5);
printf("RESULT: V(1) = %f, V(2) = %f, V(3) = %f, V(4) = %f, V(5) = %f", x1, x2, x3, x4, x5);
return 0;
}