/*
Name: read_binary.cpp
Created by: Stefan Ritt <stefan.ritt@psi.ch>
Date: July 30th, 2014
Purpose: Example file to read binary data saved by DRSOsc.
Compile and run it with:
gcc -o read_binary read_binary.cpp
./read_binary <filename>
This program assumes that a pulse from a signal generator is split
and fed into channels #1 and #2. It then calculates the time difference
between these two pulses to show the performance of the DRS board
for time measurements.
$Id: read_binary.cpp 22321 2016-08-25 12:26:12Z ritt $
*/
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
typedef struct {
char tag[3];
char version;
} FHEADER;
typedef struct {
char time_header[4];
} THEADER;
typedef struct {
char bn[2];
unsigned short board_serial_number;
} BHEADER;
typedef struct {
char event_header[4];
unsigned int event_serial_number;
unsigned short year;
unsigned short month;
unsigned short day;
unsigned short hour;
unsigned short minute;
unsigned short second;
unsigned short millisecond;
unsigned short range;
} EHEADER;
typedef struct {
char tc[2];
unsigned short trigger_cell;
} TCHEADER;
typedef struct {
char c[1];
char cn[3];
} CHEADER;
/*-----------------------------------------------------------------------------*/
int main(int argc, const char * argv[])
{
FHEADER fh;
THEADER th;
BHEADER bh;
EHEADER eh;
TCHEADER tch;
CHEADER ch;
unsigned int scaler;
unsigned short voltage[1024];
double waveform[16][4][1024], time[16][4][1024];
float bin_width[16][4][1024];
int i, j, b, chn, n, chn_index, n_boards;
double t1, t2, dt;
char filename[256];
int ndt;
double threshold, sumdt, sumdt2;
if (argc > 1)
strcpy(filename, argv[1]);
else {
printf("Usage: read_binary <filename>\n");
return 0;
}
// open the binary waveform file
FILE *f = fopen(filename, "rb");
if (f == NULL) {
printf("Cannot find file \'%s\'\n", filename);
return 0;
}
// read file header
fread(&fh, sizeof(fh), 1, f);
if (fh.tag[0] != 'D' || fh.tag[1] != 'R' || fh.tag[2] != 'S') {
printf("Found invalid file header in file \'%s\', aborting.\n", filename);
return 0;
}
if (fh.version != '2') {
printf("Found invalid file version \'%c\' in file \'%s\', should be \'2\', aborting.\n", fh.version, filename);
return 0;
}
// read time header
fread(&th, sizeof(th), 1, f);
if (memcmp(th.time_header, "TIME", 4) != 0) {
printf("Invalid time header in file \'%s\', aborting.\n", filename);
return 0;
}
for (b = 0 ; ; b++) {
// read board header
fread(&bh, sizeof(bh), 1, f);
if (memcmp(bh.bn, "B#", 2) != 0) {
// probably event header found
fseek(f, -4, SEEK_CUR);
break;
}
printf("Found data for board #%d\n", bh.board_serial_number);
// read time bin widths
memset(bin_width[b], sizeof(bin_width[0]), 0);
for (chn=0 ; chn<5 ; chn++) {
fread(&ch, sizeof(ch), 1, f);
if (ch.c[0] != 'C') {
// event header found
fseek(f, -4, SEEK_CUR);
break;
}
i = ch.cn[2] - '0' - 1;
printf("Found timing calibration for channel #%d\n", i+1);
fread(&bin_width[b][i][0], sizeof(float), 1024, f);
// fix for 2048 bin mode: double channel
if (bin_width[b][i][1023] > 10 || bin_width[b][i][1023] < 0.01) {
for (j=0 ; j<512 ; j++)
bin_width[b][i][j+512] = bin_width[b][i][j];
}
}
}
n_boards = b;
// initialize statistics
ndt = 0;
sumdt = sumdt2 = 0;
// loop over all events in the data file
for (n=0 ; ; n++) {
// read event header
i = (int)fread(&eh, sizeof(eh), 1, f);
if (i < 1)
break;
printf("Found event #%d %d %d\n", eh.event_serial_number, eh.second, eh.millisecond);
// loop over all boards in data file
for (b=0 ; b<n_boards ; b++) {
// read board header
fread(&bh, sizeof(bh), 1, f);
if (memcmp(bh.bn, "B#", 2) != 0) {
printf("Invalid board header in file \'%s\', aborting.\n", filename);
return 0;
}
// read trigger cell
fread(&tch, sizeof(tch), 1, f);
if (memcmp(tch.tc, "T#", 2) != 0) {
printf("Invalid trigger cell header in file \'%s\', aborting.\n", filename);
return 0;
}
if (n_boards > 1)
printf("Found data for board #%d\n", bh.board_serial_number);
// reach channel data
for (chn=0 ; chn<4 ; chn++) {
// read channel header
fread(&ch, sizeof(ch), 1, f);
if (ch.c[0] != 'C') {
// event header found
fseek(f, -4, SEEK_CUR);
break;
}
chn_index = ch.cn[2] - '0' - 1;
fread(&scaler, sizeof(int), 1, f);
fread(voltage, sizeof(short), 1024, f);
for (i=0 ; i<1024 ; i++) {
// convert data to volts
waveform[b][chn_index][i] = (voltage[i] / 65536. + eh.range/1000.0 - 0.5);
// calculate time for this cell
for (j=0,time[b][chn_index][i]=0 ; j<i ; j++)
time[b][chn_index][i] += bin_width[b][chn_index][(j+tch.trigger_cell) % 1024];
}
}
// align cell #0 of all channels
t1 = time[b][0][(1024-tch.trigger_cell) % 1024];
for (chn=1 ; chn<4 ; chn++) {
t2 = time[b][chn][(1024-tch.trigger_cell) % 1024];
dt = t1 - t2;
for (i=0 ; i<1024 ; i++)
time[b][chn][i] += dt;
}
t1 = t2 = 0;
threshold = 0.3;
// find peak in channel 1 above threshold
for (i=0 ; i<1022 ; i++)
if (waveform[b][0][i] < threshold && waveform[b][0][i+1] >= threshold) {
t1 = (threshold-waveform[b][0][i])/(waveform[b][0][i+1]-waveform[b][0][i])*(time[b][0][i+1]-time[b][0][i])+time[b][0][i];
break;
}
// find peak in channel 2 above threshold
for (i=0 ; i<1022 ; i++)
if (waveform[b][1][i] < threshold && waveform[b][1][i+1] >= threshold) {
t2 = (threshold-waveform[b][1][i])/(waveform[b][1][i+1]-waveform[b][1][i])*(time[b][1][i+1]-time[b][1][i])+time[b][1][i];
break;
}
// calculate distance of peaks with statistics
if (t1 > 0 && t2 > 0) {
ndt++;
dt = t2 - t1;
sumdt += dt;
sumdt2 += dt*dt;
}
}
}
// print statistics
printf("dT = %1.3lfns +- %1.1lfps\n", sumdt/ndt, 1000*sqrt(1.0/(ndt-1)*(sumdt2-1.0/ndt*sumdt*sumdt)));
return 1;
}