#include "include/guide.h"
 
 
 
#include <iostream>
 
 
 
// vector output shortcut
 
void printv(TVector3 v)
 
{
 
  printf("(x,y,z) = (%.4lf, %.4lf, %.4lf)\n", v.x(), v.y(), v.z());
 
}
 
// TVector3::Rotate does not seem accurate enough
 
TVector3 rotatey(TVector3 v, double theta)
 
{
 
  return TVector3(v.x() * TMath::Cos(theta) + v.z() * TMath::Sin(theta),
 
      v.y(),
 
      -v.x() * TMath::Sin(theta) + v.z() * TMath::Cos(theta));
 
}
 
// another shortcut not found in TMath
 
int sign(double in)
 
{
 
  if(in >= 0.0) return 1;
 
  else return -1;
 
}
 
 
 
void CRay::Set(TVector3 r0, TVector3 k0)
 
{
 
  r = r0; k = k0.Unit();
 
}
 
//-----------------------------------------------------------------------------
 
//void CRay::Set(double x0, double y0, double z0, double l0, double m0, double n0)
 
//{
 
//r.SetXYZ(x0, y0, z0);
 
//n.SetXYZ(l0, m0, n0); n = n.Unit();
 
//}
 
//-----------------------------------------------------------------------------
 
 
 
CRay& CRay::operator = (const CRay& rhs)
 
{
 
        r.SetXYZ(rhs.GetR().x(), rhs.GetR().y(), rhs.GetR().z());
 
        //this->r.SetXYZ(p.x(), p.y(), p.z());
 
        k.SetXYZ(rhs.GetK().x(), rhs.GetK().y(), rhs.GetK().z());
 
        p.SetXYZ(rhs.GetP().x(), rhs.GetP().y(), rhs.GetP().z());
 
        return *this;
 
}
 
void CRay::Print()
 
{
 
  printf("---> CRay::Print() <---\n");
 
  printf("(x,y,z)=(%.2lf, %.2lf, %.2lf); (l,m,n)=(%.2lf, %.2lf, %.2lf)\n",
 
      r.x(), r.y(), r.z(), k.x(), k.y(), k.z());
 
}
 
void CRay::Draw()
 
{
 
  double t = 50.0;
 
  TPolyLine3D *line3d = new TPolyLine3D(2);
 
  //line3d->SetPoint(0, r.x() - t*n.x(), r.y() - t*n.y(), r.z() - t*n.z());
 
  line3d->SetPoint(0, r.x(), r.y(), r.z());
 
  line3d->SetPoint(1, r.x() + t*k.x(), k.y() + t*k.y(), r.z() + t*k.z());
 
  line3d->SetLineWidth(1);
 
  line3d->SetLineColor(color);
 
 
 
  line3d->Draw();
 
}
 
void CRay::Draw(double x_from, double x_to)
 
{
 
  double A1, A2;
 
  TPolyLine3D *line3d = new TPolyLine3D(2);
 
 
 
  if(k.x() < MARGIN) {
 
      A1 = A2 = 0.0;
 
  } else {
 
      A1 = (x_from - r.x())/k.x();
 
      A2 = (x_to - r.x())/k.x();
 
  }
 
 
 
  line3d->SetPoint(0, x_from, A1*k.y()+r.y(), A1*k.z()+r.z());
 
  line3d->SetPoint(1, x_to, A2*k.y()+r.y(), A2*k.z()+r.z());
 
  line3d->SetLineWidth(1);
 
  line3d->SetLineColor(color);
 
 
 
  line3d->Draw();
 
}
 
void CRay::DrawS(double x_from, double t)
 
{
 
  double A1;
 
  TPolyLine3D *line3d = new TPolyLine3D(2);
 
 
 
  if(k.x() < MARGIN)
 
    A1 = 0.0;
 
  else
 
    A1 = (x_from - r.x())/k.x();
 
 
 
  line3d->SetPoint(0, x_from, A1*k.y()+r.y(), A1*k.z()+r.z());
 
  line3d->SetPoint(1, r.x() + t*k.x(), r.y() + t*k.y(), r.z() + t*k.z());
 
  line3d->SetLineWidth(1);
 
  line3d->SetLineColor(color);
 
 
 
  line3d->Draw();
 
}
 
 
 
 
 
CPlane4::CPlane4() :
 
            n(TVector3(1.0, 0.0, 0.0)),
 
            A(0),
 
            B(0),
 
            C(0),
 
            D(0)
 
{ r[0] = TVector3(0.0,-1.0,-1.0);
 
r[1] = TVector3(0.0,-1.0, 1.0);
 
r[2] = TVector3(0.0, 1.0, 1.0);
 
r[3] = TVector3(0.0, 1.0,-1.0);
 
for(int i=0;i<4;i++) edge[i] = TVector3(0,0,0);
 
for(int i=0;i<4;i++) angle_r[i] = 0;
 
};
 
CPlane4::CPlane4(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
 
{
 
  //Set(r1, r2, r3, r4);
 
  //}
 
  //-----------------------------------------------------------------------------
 
  // za izracun parametrov ravnine je en vektor prevec, vendar tega
 
  // rabim kot zadnji vogal poligona
 
  //void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
 
  //{
 
  double x1,y1,z1, x2,y2,z2, x3,y3,z3;
 
 
 
  x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
 
  x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
 
  x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
 
 
 
  A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
 
  B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
 
  C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
 
  D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
 
 
 
  r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
 
  n.SetXYZ(A, B, C);
 
  n = n.Unit();
 
 
 
  for(int i=0;i<4;i++)
 
    edge[i] = r[i-3 ? i+1 : 0] - r[i];
 
 
 
  for(int i=0;i<4;i++)
 
    angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
 
};
 
 
 
void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4)
 
{
 
  double x1,y1,z1, x2,y2,z2, x3,y3,z3;
 
 
 
  x1 = r1.x(); y1 = r1.y(); z1 = r1.z();
 
  x2 = r2.x(); y2 = r2.y(); z2 = r2.z();
 
  x3 = r3.x(); y3 = r3.y(); z3 = r3.z();
 
 
 
  A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
 
  B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
 
  C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
 
  D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
 
 
 
  r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4;
 
  n.SetXYZ(A, B, C);
 
  n = n.Unit();
 
 
 
  for(int i=0;i<4;i++)
 
    edge[i] = r[i-3 ? i+1 : 0] - r[i];
 
 
 
  for(int i=0;i<4;i++)
 
    angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
 
};
 
 
 
CPlane4::CPlane4(TVector3 *vr)
 
{
 
  double x1,y1,z1, x2,y2,z2, x3,y3,z3;
 
 
 
  x1 = vr[0].x(); y1 = vr[0].y(); z1 = vr[0].z();
 
  x2 = vr[1].x(); y2 = vr[1].y(); z2 = vr[1].z();
 
  x3 = vr[2].x(); y3 = vr[2].y(); z3 = vr[2].z();
 
 
 
  A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1);
 
  B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3);
 
  C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1);
 
  D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2);
 
 
 
  r[0] = vr[0]; r[1] = vr[1]; r[2] = vr[2]; r[3] = vr[3];
 
  n.SetXYZ(A, B, C);
 
  n = n.Unit();
 
 
 
  for(int i=0;i<4;i++)
 
    edge[i] = r[i-3 ? i+1 : 0] - r[i];
 
 
 
  for(int i=0;i<4;i++)
 
    angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) ));
 
};
 
//-----------------------------------------------------------------------------
 
// posce presecisce !neskoncne! ravnine s premico (class CRay)
 
// ce najde presecisce vrne 1
 
int CPlane4::GetIntersection(TVector3 *vec, CRay ray)
 
{
 
  TVector3 N; //nenormirani vektor (A,B,C)
 
  double num, den; //stevec, imenovalec
 
  double t;
 
  TVector3 tmp;
 
 
 
  N.SetXYZ(A,B,C);
 
 
 
  num = N*ray.GetR() + D;
 
  den = N*ray.GetK();
 
 
 
  if (dbg) printf("t = %6.3lf / %6.3lf =  %6.3lf\n", num, den, num/den);
 
 
 
  //if(den == 0)
 
  if(TMath::Abs(den) < MARGIN) {
 
      //if(num == 0)
 
      if(TMath::Abs(num) < MARGIN) {
 
          if (dbg) printf("The ray is on the surface!\n");
 
          return 0; //return 2; // premica lezi na ravnini
 
      }
 
      else {
 
          if (dbg) printf("The ray is parallel to the surface!\n");
 
          return 0; // ni presecisca
 
      }
 
  }
 
 
 
  t = num / den;
 
 
 
  tmp = ray.GetR();
 
  tmp -= t*ray.GetK();
 
  *vec = tmp;
 
  return 1;
 
}
 
//-----------------------------------------------------------------------------
 
// ali je vektor vec, ki lezi na ravnini skupaj z e1 in e2, med njima
 
// angle_r je kot med e1 in e2, vsi vektorji imajo skupno izhodisce
 
int CPlane4::IsInTri(TVector3 vec, TVector3 e1, TVector3 e2, double angle)
 
{
 
  double angle_ve1, angle_ve2;
 
 
 
  if(dbg) printf("--- CPlane4::IsInTri ---\n");
 
 
 
  angle_ve1 = TMath::ACos(/*TMath::Abs*/( (e1.Unit()) * (vec.Unit()) ));
 
  angle_ve2 = TMath::ACos(/*TMath::Abs*/( (e2.Unit()) * (vec.Unit()) ));
 
 
 
  if(dbg)
 
    {
 
      printf("angle_ve1 = %lf\n", angle_ve1*DEGREE);
 
      printf("angle_ve2 = %lf\n", angle_ve2*DEGREE);
 
      printf("angle_sum = %lf\n", (angle_ve1 + angle_ve2)*DEGREE);
 
      printf("  angle_r   = %lf\n", angle*DEGREE);
 
    }
 
 
 
  bool difference = (MARGIN < TMath::Abs(angle - (angle_ve1 + angle_ve2)));
 
  if (dbg) printf("  MARGIN < Difference = %d\n", difference);
 
  return (int) !difference;
 
}
 
//-----------------------------------------------------------------------------
 
// ali je vektor vec, ki lezi na ravnini!, znotraj meja, ki jih definirajo
 
// strije vogali te ravnine r[i]
 
int CPlane4::IsVectorIn(TVector3 vec)
 
{
 
  int status;
 
 
 
  if(dbg) printf("--- CPlane4::IsVectorIn ---\n");
 
 
 
  for(int i=0;i<3;i++)
 
    {
 
      status = IsInTri(vec - r[i], edge[i], -edge[i ? i-1 : 3], angle_r[i]);
 
      if(dbg) printf("  [%d] vec is %s\n", i, status ? "inside" : "outside");
 
      if(!status) return 0;
 
    }
 
 
 
  return 1;
 
}
 
int CPlane4::TestIntersection(CRay in)
 
{
 
  TVector3 tmp;
 
 
 
  if( GetIntersection(&tmp, in) )
 
    if( IsVectorIn(tmp) )
 
      return 1;
 
 
 
  return 0;
 
}
 
int CPlane4::TestIntersection(TVector3 *vec, CRay in)
 
{
 
  TVector3 tmp;
 
 
 
  if( GetIntersection(&tmp, in) )
 
    if( IsVectorIn(tmp) ) {
 
        *vec = tmp;
 
        return 1;
 
    }
 
 
 
  return 0;
 
}
 
void CPlane4::Print()
 
{
 
  printf("--- CPlane4::Print() ---\n");
 
  printf("  r=(%.2lf, %.2lf, %.2lf); n=(%.2lf, %.2lf, %.2lf); ",
 
      r[0].x(), r[0].y(), r[0].z(), n.x(), n.y(), n.z());
 
  printf(  "(A,B,C,D)=(%.2lf, %.2lf, %.2lf, %.2lf) \n", A, B, C, D);
 
  for(int i=0;i<4;i++) printf("  edge[%d] = (%lf, %lf, %lf)\n", i, edge[i].x(), edge[i].y(), edge[i].z());
 
  for(int i=0;i<4;i++) printf("  angle[%d] = %lf\n", i, angle_r[i]*DEGREE);
 
}
 
void CPlane4::Draw(int color, int width)
 
{
 
  TPolyLine3D *line3d = new TPolyLine3D(5);
 
 
 
  for(int i=0;i<4;i++) line3d->SetPoint(i, r[i].x(), r[i].y(), r[i].z());
 
  line3d->SetPoint(4, r[0].x(), r[0].y(), r[0].z());
 
  line3d->SetLineWidth(width); line3d->SetLineColor(color);
 
 
 
  line3d->Draw();
 
}
 
 
 
 
 
CSurface::CSurface(int type0):
 
      type(type0)
 
{
 
  TVector3 vr[4];
 
  TDatime now;
 
 
 
  vr[0].SetXYZ(0.0,-1.0,-1.0);
 
  vr[1].SetXYZ(0.0,-1.0, 1.0);
 
  vr[2].SetXYZ(0.0, 1.0, 1.0);
 
  vr[3].SetXYZ(0.0, 1.0,-1.0);
 
  //CPlane4::Set(vr);
 
  SetIndex(1.0, 1.5);
 
 
 
  reflection = c_reflectivity;
 
  rand.SetSeed(now.Get());
 
 
 
  SetFresnel();
 
}
 
CSurface::CSurface(int type0, TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4, double n10, double n20, double reflectivity)
 
{
 
  TDatime now;
 
 
 
  type = type0; CPlane4::Set(r1, r2, r3, r4);
 
  SetIndex(n10, n20);
 
 
 
  reflection = reflectivity;
 
  rand.SetSeed(now.Get());
 
 
 
  SetFresnel();
 
}
 
CSurface::CSurface(int type0, TVector3 *vr, double n10, double n20, double reflectivity)
 
{
 
  TDatime now;
 
 
 
  type = type0; CPlane4::Set(vr);
 
  SetIndex(n10, n20);
 
 
 
  reflection = reflectivity;
 
  rand.SetSeed(now.Get());
 
 
 
  SetFresnel();
 
}
 
void CSurface::SetIndex(double n10, double n20)
 
{
 
  n1 = n10; n2 = n20; n1_n2 = n1/n2;
 
 
 
  if(n1 > n2)
 
    cosTtotal = TMath::Sqrt( 1 - TMath::Power(n2/n1, 2) );
 
  else
 
    cosTtotal = 0.0;
 
}
 
//-----------------------------------------------------------------------------
 
// sprejme zarek, vrne uklonjen/odbit zarek in presecisce
 
// vrne 0 ce ni presecisca; 1 ce se je lomil
 
// 2 ce se je odbil; -2 ce se je absorbiral
 
int CSurface::PropagateRay(CRay in, CRay& out, TVector3 *intersection)
 
{
 
  if (dbg) printf("--- CSurface::PropagateRay ---\n");
 
  double cosTi; // incident ray angle
 
  double cosTt; // transmited ray angle
 
  TVector3 intersect, transmit;
 
 
 
  if( !(GetIntersection(&intersect, in) == 1) )
 
    return 0;
 
 
 
  *intersection = intersect;
 
  if( !IsVectorIn(intersect) )
 
    return 0;
 
 
 
  // --------------- Fresnel ----------------------------------------------------
 
  // R_f = a_te * R_te  +  a_tm * R_tm
 
  // e - electrical/perependicular
 
  // m - magnetic polarization/parallel
 
  double r_te=0;
 
  double r_tm=0;
 
  double R_te=0; // s reflection coefficient
 
  double R_tm=0; // p reflection coefficient
 
  double R_f = 0.0;
 
  double a_te = 0.0; // s-wave amplitude, cos Alpha
 
  double a_tm = 0.0; // p-wave amplitude, sin Alpha
 
  TVector3 v_te; // unit s-polarization vector
 
  TVector3 v_tm; // unit p-polarization vector
 
  TVector3 v_tm_t;// transmited polarization parallel with the plane of incidence
 
  TVector3 pol_t = in.GetP(); // incident polarization
 
  int sign_n; // sign of normal direction vs. inbound ray
 
  double cosTN; // debug
 
 
 
  // Decomposition of incident polarization vector
 
  // using unit vectors v_tm & v_te
 
  // in a_tm and a_te components
 
  //if(fresnel) {
 
      // s-polarization unit vector v_te
 
      // is in the plane orthogonal to the plane of incidence
 
      // defined as the plane spanned by
 
      // incident surface vector n and wave vector k
 
      // k in this notation is in.GetK()
 
      v_te = n.Cross(in.GetK());
 
      v_te = v_te.Unit();
 
      v_tm = -v_te.Cross(in.GetK());
 
      v_tm = v_tm.Unit();
 
      if(dbg) {
 
          printf("  v_te = "); printv(v_te);
 
          printf("  v_tm = "); printv(v_tm);
 
      }
 
 
 
      double cosAf = v_te * in.GetP();
 
      double alpha = TMath::ACos(cosAf);
 
      if(alpha < MARGIN) alpha = MARGIN;
 
      if(dbg) printf("  cosAf = %lf (Af = %lf)\n", cosAf, alpha*DEGREE);
 
 
 
      a_te = cosAf;
 
      a_tm = TMath::Sqrt(1 - cosAf*cosAf);
 
      if(dbg) printf("  a_te = %lf, a_tm = %lf\n", a_te, a_tm);
 
  //}
 
  // ----------------------------------------------------------------------------
 
 
 
  // reflection probability
 
  double p_ref = rand.Uniform(0.0, 1.0);
 
 
 
  if(type == SURF_TOTAL) type = SURF_REFRA;
 
  switch(type){
 
  // ----------------------------------------------------------------------------
 
  // --------------- refraction from n1 to n2 -----------------------------------
 
  // ----------------------------------------------------------------------------
 
  case SURF_REFRA:
 
    cosTi = in.GetK() * n;
 
    if(dbg) printf("  cosTi = %lf (Ti = %lf)\n", cosTi, TMath::ACos(cosTi)*DEGREE);
 
    sign_n = -sign(cosTi);
 
    if(dbg) printf("  sign_n = %d\n", sign_n);
 
    cosTi = TMath::Abs(cosTi);
 
 
 
    // Check if there can be total reflection: n1 > n2
 
    if(N1_N2(-sign_n) < 1.0)
 
      cosTtotal = TMath::Sqrt( 1 - TMath::Power(N1_N2(-sign_n), 2) );
 
    else
 
      cosTtotal = 0.0;
 
 
 
    if(dbg) printf("  cosTtotal = %lf (Ttotal = %lf)\n", cosTtotal, TMath::ACos(cosTtotal)*DEGREE);
 
    // reflection dependance on polarization missing
 
    // reflection hardcoded to 0.96
 
    if (dbg) printf("   reflection probability = %f\n", p_ref);
 
 
 
    // If n1>n2 and theta>thetaCritical, total reflection
 
    if(cosTi < cosTtotal) {
 
        if(dbg) printf("  TOTAL\n");
 
        transmit = in.GetK() + sign_n*2*cosTi*n;
 
 
 
        if(dbg) {
 
            cosTN = TMath::Abs(transmit.Unit() * n);
 
            printf("  cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
 
        }
 
        out.Set(intersect, transmit);
 
 
 
        // Shift implemented, but only linear polarization is implemented
 
        if (dbg) printf("CSurface: Propagate TOTAL\n");
 
        v_tm_t = -v_te.Cross(transmit);
 
        v_tm_t = v_tm_t.Unit();
 
        // shift the p and s components
 
        double n12 = N1_N2(-sign_n);
 
        double deltaP = 2 * atan(sqrt(1 - cosTi*cosTi - pow(n12,2))/(pow(n12,2)*cosTi));
 
        double deltaS = 2 * atan(sqrt(1 - cosTi*cosTi - pow(n12,2))/cosTi);
 
        double delta = deltaP - deltaS;
 
        //alpha += delta;
 
        a_tm = sin(alpha);
 
        a_te = cos(alpha);
 
        if (dbg) printf("  deltaP = %f deltaS = %f; new a_tm = %f, a_te = %f",
 
            deltaP, deltaS, a_tm, a_te);
 
        pol_t = a_tm*v_tm_t + a_te*v_te;
 
        if (dbg) printv(pol_t);
 
        out.setPolarization(pol_t);
 
 
 
        return REFLECTION;
 
    } else {
 
        // reflection or refraction according to Fresnel equations
 
        if(dbg) printf("  REFRACTION\n");
 
        if(dbg) printf("  N1_N2(sign_n) = %lf\n", N1_N2(sign_n));
 
        cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
 
        if(dbg) printf("  cosTt = %lf (Tt = %lf) \n", cosTt, TMath::ACos(cosTt)*DEGREE);
 
 
 
        transmit = N1_N2(sign_n)*in.GetK() + sign_n*(N1_N2(sign_n)*cosTi - cosTt)*n;
 
        if(dbg) {printf("  transmit.Unit() = "); printv(transmit.Unit());}
 
        if(dbg) {
 
            cosTN = transmit.Unit() * n;
 
            printf("  cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE);
 
        }
 
 
 
        //if(cosTi<=cosTtotal) cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2)));
 
        //if(fresnel) {
 
        r_te = (n1*cosTi - n2*cosTt)/(n1*cosTi + n2*cosTt); // transverse
 
        r_tm = (n2*cosTi - n1*cosTt)/(n1*cosTt + n2*cosTi); // paralel
 
 
 
        if(dbg) printf("  r_te = %lf, r_tm = %lf\n", r_te, r_tm);
 
 
 
        // transmited polarization
 
        v_tm_t = -v_te.Cross(transmit);
 
        v_tm_t = v_tm_t.Unit();
 
        pol_t = a_te*(1.0 - TMath::Abs(r_te))*v_te + a_tm*(1.0 - TMath::Abs(r_tm))*v_tm_t;
 
 
 
        if(dbg) {
 
            printf("  v_tm_t = "); printv(v_tm_t);
 
            printf("  pol_t = "); printv(pol_t);
 
        }
 
 
 
        // Fresnel coefficients
 
        R_te = TMath::Power(r_te, 2);
 
        R_tm = TMath::Power(r_tm, 2);
 
        R_f = a_te*a_te*R_te + a_tm*a_tm*R_tm;
 
 
 
        if (dbg) printf("  R_te = %lf, R_tm = %lf, R_f = %lf\n", R_te, R_tm, R_f);
 
    }
 
 
 
    if(p_ref >= R_f) { // se lomi
 
        if (dbg) printf("   SURFACE REFRACTED. Return.\n");
 
        out.Set(intersect, transmit);
 
        out.setPolarization(pol_t);
 
        return REFRACTION;
 
    } else { // se odbije
 
        if (dbg) printf("   SURFACE REFLECTED. p_ref=%f, R_f=%f\n", p_ref, R_f);
 
        transmit = in.GetK() + sign_n*2*cosTi*n;
 
        TVector3 v_tm_r = -v_te.Cross(transmit);
 
        v_tm_r = v_tm_r.Unit();
 
        out.Set(intersect, transmit);
 
        //pol_t = -in.GetP() + sign_n*2*cosTi*n;
 
        pol_t = a_te*(1.0 - TMath::Abs(r_te))*v_te + a_tm*(1.0 - TMath::Abs(r_tm))*v_tm_r;
 
        out.setPolarization(pol_t);
 
        return REFLECTION;
 
    }
 
 
 
    //}
 
    break;
 
 
 
    // ----------------------------------------------------------------------------
 
    // --------------- reflection at "reflection" probability ---------------------
 
    // ----------------------------------------------------------------------------
 
  case SURF_REFLE:
 
    p_ref = rand.Uniform(0.0, 1.0);
 
    if(p_ref < reflection) { // se odbije
 
        cosTi = in.GetK() * n;
 
        transmit = in.GetK() - 2*cosTi*n;
 
        out.Set(intersect, transmit);
 
        return REFLECTION; //sdhfvjhsdbfjhsdbcvjhsb
 
    } else { // se ne odbije
 
        transmit = in.GetK();
 
        out.Set(intersect, transmit);
 
        return ABSORBED;
 
    }
 
    break;
 
 
 
    // total reflection from n1 to n2 with R probbability
 
  case SURF_IMPER:
 
    p_ref = rand.Uniform(0.0, 1.0);
 
    if(p_ref < reflection) { // se odbije
 
        cosTi = in.GetK() * n;
 
        if(TMath::Abs(cosTi) < cosTtotal) { // totalni odboj
 
            transmit = in.GetK() - 2*cosTi*n;
 
            out.Set(intersect, transmit);
 
        } else { // ni tot. odboja
 
            transmit = in.GetK();
 
            out.Set(intersect, transmit);
 
            return ABSORBED;
 
        }
 
    } else { // se ne odbije
 
        transmit = in.GetK();
 
        out.Set(intersect, transmit);
 
        return ABSORBED;
 
    }
 
    break;
 
 
 
  default:
 
    out = in;
 
    break;
 
  }
 
 
 
  return REFRACTION;
 
}
 
 
 
Guide::Guide(TVector3 center0, DetectorParameters ¶meters) :
 
    _d(parameters.getD()),
 
    _n1(parameters.getN1()),
 
    _n2(parameters.getN2()),
 
    _n3(parameters.getN3()),
 
    _r(c_reflectivity),
 
    _absorption(0),
 
    _A(0),
 
    _badCoupling(parameters.badCoupling())
 
{
 
  double t;
 
  TDatime now;
 
  rand.SetSeed(now.Get());
 
  center = center0;
 
  double b = parameters.getB();
 
  double a = parameters.getA();
 
  // if PlateOn, then n0 = n3 (optical grease), else = n1 (air)
 
  //double n0 = (parameters.getPlateOn() ? parameters.getN3(): n1);
 
  double n0 = (parameters.getPlateOn() ? _n2 : _n1);
 
  int fresnel = parameters.getFresnel();
 
 
 
  // light guide edges
 
  t = b/2.0;
 
  vodnik_edge[0].SetXYZ(0.0, t,-t);
 
  vodnik_edge[1].SetXYZ(0.0, t, t);
 
  vodnik_edge[2].SetXYZ(0.0,-t, t);
 
  vodnik_edge[3].SetXYZ(0.0,-t,-t);
 
  t = a/2.0;
 
  vodnik_edge[4].SetXYZ(_d, t,-t);
 
  vodnik_edge[5].SetXYZ(_d, t, t);
 
  vodnik_edge[6].SetXYZ(_d,-t, t);
 
  vodnik_edge[7].SetXYZ(_d,-t,-t);
 
 
 
  for(int i = 0; i<8; i++) vodnik_edge[i] += center;
 
 
 
  // light guide surfaces
 
  s_side[0].Set(SURF_REFRA, vodnik_edge, n0, _n2, _r);
 
  s_side[0].FlipN();
 
 
 
  s_side[1].Set(SURF_REFRA, vodnik_edge[3], vodnik_edge[2],
 
      vodnik_edge[6], vodnik_edge[7], _n2, _n1, _r);
 
  s_side[2].Set(SURF_REFRA, vodnik_edge[2], vodnik_edge[1],
 
      vodnik_edge[5], vodnik_edge[6], _n2, _n1, _r);
 
  s_side[3].Set(SURF_REFRA, vodnik_edge[1], vodnik_edge[0],
 
      vodnik_edge[4], vodnik_edge[5], _n2, _n1, _r);
 
  s_side[4].Set(SURF_REFRA, vodnik_edge[0], vodnik_edge[3],
 
      vodnik_edge[7], vodnik_edge[4], _n2, _n1, _r);
 
  // n3 - ref ind at the exit, grease, air
 
  s_side[5].Set(SURF_REFRA, &vodnik_edge[4], _n2, _n3, _r);
 
  s_side[5].FlipN();
 
  // exit surface in the case of bad coupling
 
  noCoupling.Set(SURF_REFRA, &vodnik_edge[4], _n2, 1.0, _r);
 
  noCoupling.FlipN();
 
  // grease = specific pattern area of coupling
 
  TVector3 activePosition(center);
 
  activePosition += TVector3(_d, 0, 0);
 
  TVector3 normal(1,0,0);
 
  grease.Set(activePosition, normal, 0.95*a/2.0);
 
 
 
  if(fresnel) for(int i=0; i<6; i++) s_side[i].SetFresnel(1);
 
 
 
  // statistics histograms
 
  //hfate = (TH1F)gROOT->FindObject("hfate"); //if(hfate) delete hfate;
 
  hfate = TH1F("hfate", "Ray fate", 8, -3.5, 4.5);
 
  (hfate.GetXaxis())->SetBinLabel(1, "Back Refl");
 
  (hfate.GetXaxis())->SetBinLabel(2, "Side");
 
  (hfate.GetXaxis())->SetBinLabel(3, "Refracted");
 
  (hfate.GetXaxis())->SetBinLabel(4, "LG Miss");
 
  (hfate.GetXaxis())->SetBinLabel(5, "Exit");
 
  (hfate.GetXaxis())->SetBinLabel(6, "Enter");
 
  (hfate.GetXaxis())->SetBinLabel(7, "Simulated");
 
  (hfate.GetXaxis())->SetBinLabel(8, "Absorb");
 
 
 
  //hnodb_all = (TH1F*)gROOT->FindObject("hnodb_all"); if(hnodb_all) delete hnodb_all;
 
  hnodb_all = TH1F("hnodb_all", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
 
 
 
  //hnodb_exit = (TH1F*)gROOT->FindObject("hnodb_exit"); if(hnodb_exit) delete hnodb_exit;
 
  hnodb_exit = TH1F("hnodb_exit", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5);
 
 
 
  int nBins = nch;
 
  //hin = (TH2F*)gROOT->FindObject("hin"); if(hin) delete hin;
 
  hin = TH2F("hin", ";x [mm]; y[mm]", nBins, -b/2.0, +b/2.0, nBins, -b/2.0, +b/2.0);
 
 
 
  //hout = (TH2F*)gROOT->FindObject("hout"); if(hout) delete hout;
 
  hout = TH2F("hout", ";x [mm];y [mm]", nBins, -a/2.0, +a/2.0, nBins, -a/2.0, +a/2.0);
 
}
 
//-----------------------------------------------------------------------------
 
// Sledi zarku skozi vodnik. Vrne:                                             
 
//  0, ce zgresi vstopno ploskev                                               
 
//  1, ce zadane izstopno ploskev                                              
 
// -1, ce se v vodniku ne odbije totalno 
 
//  2, enter the light guide, bin 2 of hfate = refraction                                     
 
// -2, ce se ne odbije zaradi koncnega R stranic                               
 
// -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev              
 
// +4, ce se absorbira v materialu                                             
 
Fate Guide::PropagateRay(CRay in, CRay& out, int *n_points, TVector3 *points)
 
{
 
  if (dbg) printf("--- GUIDE::PropagateRay ---\n");
 
  // ray0 - incident ray
 
  // ray1 - trans/refl ray
 
  CRay ray0;
 
  CRay ray1;
 
  TVector3 vec0, vec1;
 
  int inters_i = 0;
 
 
 
  ray0 = in;
 
  int n_odb = 0;
 
  int last_hit = 0;
 
  int propagation = 0;
 
  int result = s_side[0].PropagateRay(ray0, ray1, &vec1);
 
  if( !(result) ) {
 
      // ce -NI- presecisca z vstopno
 
      if (dbg) printf("  GUIDE: missed the light guide\n");
 
      fate = missed;
 
      //hfate->Fill(0);
 
  } else if(result == REFLECTION) {
 
      if (dbg) printf(" REFLECTED on the entry surface!\n");
 
      fate = backreflected;
 
      //hfate->Fill(-3);
 
  } else {
 
      if (dbg) printf("  GUIDE: ray entered\n");
 
      points[0] = ray1.GetR();
 
      hfate.Fill(enter); // enter
 
      hin.Fill(vec1.y(), vec1.z());
 
      if (dbg) printf("  GUIDE: n_odb = %d\n", n_odb);
 
 
 
      while (n_odb++ < MAX_REFLECTIONS) {
 
          if (dbg) printf("  GUIDE: Boundary test: %d\n",n_odb);
 
          ray0 = ray1;
 
          vec0 = vec1;
 
          propagation = 11;
 
          for(inters_i=0; inters_i<6; inters_i++) {
 
              if (dbg) printf("  GUIDE: Test intersection with surface %d \n", inters_i);
 
              if( inters_i != last_hit) {
 
                  int testBoundary = s_side[inters_i].TestIntersection(&vec1, ray1);
 
                  if( testBoundary ) {
 
                      if (dbg) printf("  GUIDE: ray intersects with LG surface %d\n",inters_i);
 
                      break;
 
                  }
 
              }
 
          }
 
          points[n_odb] = vec1;
 
          if(inters_i == 0) {
 
              fate = backreflected;
 
              //hfate->Fill(backreflected);
 
              break;
 
          } // backreflection
 
 
 
          // the passage is possible, test propagation
 
          propagation = s_side[inters_i].PropagateRay(ray0, ray1, &vec1);
 
 
 
          if (dbg) printf("  GUIDE: surface = %d, propagation = %d\n", inters_i, propagation);
 
 
 
 
 
          if(propagation == ABSORBED) {
 
              fate = noreflection;
 
              break;
 
          } //refraction due to finite reflectivity
 
 
 
          if(inters_i == 5) {
 
              if (_badCoupling) {
 
                  TVector3 hitVector(0,0,0);
 
                  bool hitActive = grease.TestIntersection(&hitVector, ray0);
 
                  if (hitActive and dbg) printf("   GUIDE: hit grease\n");
 
                  if (!hitActive) propagation = noCoupling.PropagateRay(ray0, ray1, &vec1);
 
              }
 
              // check on which side the vector is?
 
              TVector3 ray = ray1.GetK();
 
              TVector3 exitNormal = s_side[5].GetN();
 
              if (dbg) printf("ray*n_5 = %lf\n", ray*exitNormal);
 
              if (ray*exitNormal > 0) {
 
                  if (dbg) printf("  GUIDE: ray is backreflected from exit window.\n");
 
                  fate = backreflected;
 
                  n_odb++;
 
                  points[n_odb] = vec1;
 
                  ray0 = ray1;
 
                  break;
 
              }
 
              fate =  hitExit;
 
              hout.Fill(vec1.y(), vec1.z());
 
              hnodb_exit.Fill(n_odb-1);
 
              n_odb++;
 
              points[n_odb] = vec1;
 
              ray0 = ray1;
 
              break;
 
          }
 
 
 
          if(propagation == REFRACTION) {
 
              fate = refracted;
 
              n_odb++;
 
              points[n_odb] = vec1;
 
              ray0 = ray1;
 
              break;
 
          } // no total reflection when should be
 
 
 
          last_hit = inters_i;
 
      }
 
  }
 
 
 
  //--- material absorption ---
 
  if(_absorption) {
 
      double travel = 0.0;
 
      if (dbg) printf("n_odb = %d\n", n_odb);
 
      for(int point = 0; point < n_odb-1; point++) {
 
          travel += (points[point] - points[point+1]).Mag();
 
          if (dbg) printf("travel = %lf\n", travel);
 
      }
 
      double T_abs = TMath::Exp(-travel/_A);
 
      if(dbg)printf("T_abs = %lf\n", T_abs);
 
      double p_abs = rand.Uniform(0.0, 1.0);
 
      if(dbg)printf("p_abs = %lf\n", p_abs);
 
 
 
      if(p_abs > T_abs) fate = absorbed; // absorption
 
  }
 
  //--- material absorption ---
 
 
 
  hfate.Fill(fate);
 
  hfate.Fill(rays);
 
  hnodb_all.Fill(n_odb-2);
 
  *n_points = n_odb+1;
 
  out = ray0;
 
  return fate;
 
}
 
void Guide::GetVFate(int *out)
 
{
 
  for(int i=0;i<7;i++) out[i] = (int)hfate.GetBinContent(i+1);
 
}
 
void Guide::Draw(int color, int width)
 
{
 
  for(int i = 0; i<6; i++) (&s_side[i])->Draw(color, width);
 
}
 
void Guide::DrawSkel(int color, int width)
 
{
 
  TPolyLine3D *line3d = new TPolyLine3D(2);
 
  line3d->SetLineWidth(width);
 
  line3d->SetLineColor(color);
 
 
 
  for(int i=0; i<4; i++) {
 
      line3d->SetPoint(0, vodnik_edge[i+0].x(), vodnik_edge[i+0].y(), vodnik_edge[i+0].z());
 
      line3d->SetPoint(1, vodnik_edge[i+4].x(), vodnik_edge[i+4].y(), vodnik_edge[i+4].z());
 
      line3d->DrawClone();
 
  }
 
}
 
 
 
 
 
int CPlaneR::TestIntersection(TVector3 *vec, CRay ray)
 
{
 
  double num, den; //stevec, imenovalec
 
  double t;
 
  TVector3 tmp;
 
 
 
  if(dbg) printf("---> CPlaneR::TestIntersection <---\n");
 
  if(dbg) {printf("c = "); printv(center); printf(" | n = "); printv(n); printf("\n");}
 
 
 
  double D = - n*center;
 
  num = n*ray.GetR() + D;
 
  den = n*ray.GetK();
 
 
 
  if(dbg) printf("D = %.4lf | num = %.4lf | den = %.4lf\n", D, num, den);
 
 
 
  if(TMath::Abs(den) < MARGIN) {
 
      if(TMath::Abs(num) < MARGIN)
 
        return 0;
 
      else
 
        return 0;
 
  }
 
 
 
  t = num / den;
 
 
 
  if(dbg) printf("t = %.4lf | ", t);
 
 
 
  tmp = ray.GetR();
 
  tmp -= t*ray.GetK();
 
  *vec = tmp;
 
 
 
  if(dbg) {printv(tmp); printf(" | Rv = %.4lf <> R = %.4lf\n", ((tmp - center).Mag()), _r);}
 
 
 
 
 
  if( ((tmp - center).Mag()) < _r )
 
    return 1;
 
  else
 
    return 0;
 
}
 
 
 
void CPlaneR::Draw(int color, int width)
 
{
 
  const int NN = 32;
 
  double phi, x, y;
 
 
 
  TPolyLine3D *arc;
 
  arc = new TPolyLine3D(NN+1);
 
  arc->SetLineWidth(width);
 
  arc->SetLineColor(color);
 
 
 
  for(int i=0; i<=NN; i++) {
 
      phi = i*2.0*TMath::Pi()/NN;
 
      x = _r*TMath::Cos(phi);
 
      y = _r*TMath::Sin(phi);
 
      arc->SetPoint(i, center.x(),  x,  y);
 
  }
 
  arc->Draw();
 
}
 
 
 
 
 
CDetector::CDetector(TVector3 center0, DetectorParameters& parameters) :
 
      center(center0),
 
      glass_on(parameters.getGlassOn()),
 
      glass_d(parameters.getGlassD()),
 
      col_in(2),
 
      col_lg(8),
 
      col_out(4),
 
      col_rgla(6),
 
      col_LG(1),
 
      col_glass(4),
 
      col_active(7),
 
      guide_on(parameters.getGuideOn()),
 
      guide(Guide(center0, parameters)),
 
      plate(Plate(parameters)),
 
      _plateWidth(parameters.getPlateWidth()),
 
      _plateOn(parameters.getPlateOn()),
 
      offsetY(parameters.getOffsetY()),
 
      offsetZ(parameters.getOffsetZ())
 
{
 
  //  };
 
 
 
  //-----------------------------------------------------------------------------
 
  //void CDetector::Init()
 
  //{
 
  double d = parameters.getD();
 
  double x_offset;
 
  if(guide_on) x_offset = center.x();
 
  else x_offset = center.x() - d;
 
 
 
  double b = parameters.getB();
 
  //double n1 = parameters.getN1();
 
  //double n2 = parameters.getN2();
 
  double n3 = parameters.getN3();
 
  double reflectivity = c_reflectivity;
 
  double x_gap = parameters.getGap().X();
 
  double y_gap = parameters.getGap().Y();
 
  double z_gap = parameters.getGap().Z();
 
 
 
  // additional glass between at top of SiPM
 
  // example: epoxy n=1.60
 
  double n4 = 1.57;
 
  TVector3 plane_v[4];
 
  int nBins = nch;
 
  double p_size = b/2.0;
 
  plane_v[0].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap - p_size);
 
  plane_v[1].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap + p_size);
 
  plane_v[2].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap + p_size);
 
  plane_v[3].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap - p_size);
 
  glass.Set(SURF_REFRA, plane_v, n3, n4, reflectivity);
 
  glass.FlipN();
 
 
 
  // additional circular glass between LG and SiPM
 
  glass_circle.Set(TVector3(x_offset+d+glass_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), b);
 
 
 
  //hglass = (TH2F*)gROOT->FindObject("hglass"); if(hglass) delete hglass;
 
  hglass = TH2F("hglass", "",
 
      nBins, y_gap - p_size, y_gap + p_size,
 
      nBins, z_gap - p_size, z_gap + p_size);
 
 
 
  // SiPM active surface
 
  p_size = parameters.getActive()/2.0;
 
  if (dbg) cout<<"SiPM active length "<<parameters.getActive()<<endl;
 
 
 
  plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
 
  plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
 
  plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
 
  plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
 
  active.Set(plane_v);
 
  //active surface in case of bad coupling is circle d=a
 
  TVector3 activePosition(center);
 
  activePosition += TVector3(d + x_gap, 0, 0);
 
  TVector3 normal(1,0,0);
 
  grease.Set(activePosition, normal, 1.0*p_size);
 
 
 
  //hactive = (TH2F*)gROOT->FindObject("hactive"); if(hactive) delete hactive;
 
  //hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
 
  hactive = TH2F("hactive", ";x [mm];y [mm]", nBins, y_gap - p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
 
 
 
  p_size = b/2.0;
 
  //p_size = 2.5;
 
  //p_size = M*0.6;
 
  //hlaser = (TH2F*)gROOT->FindObject("hlaser"); if(hlaser) delete hlaser;
 
  hlaser = TH2F("hlaser", ";x [mm]; y [mm]", nBins, -p_size+offsetY, p_size+offsetY, nBins, -p_size+offsetZ, p_size+offsetZ);
 
 
 
  // collection surface in SiPM plane
 
  p_size = 1.4*b/2.0;
 
  plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size);
 
  plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size);
 
  plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size);
 
  plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size);
 
  detector.Set(plane_v);
 
 
 
  //hdetector = (TH2F*)gROOT->FindObject("hdetector"); if(hdetector) delete hdetector;
 
  //hdetector = new TH2F("hdetector", "Hits detector plane", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size);
 
  hdetector = TH2F("hdetector", ";x [mm]; y [mm]", nBins, y_gap-p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ);
 
 
 
  /*
 
        window_circle = new CPlaneR(TVector3(x_offset+d+window_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), window_R);   
 
 
 
        p_size = M*a;
 
        plane_v[0].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap - p_size);
 
        plane_v[1].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap + p_size);
 
        plane_v[2].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap + p_size);
 
        plane_v[3].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap - p_size);
 
        window = new CSurface(SURF_REFRA, plane_v, n1, n2, reflectivity); window->FlipN();
 
 
 
        hwindow = (TH2F*)gROOT->FindObject("hwindow"); if(hwindow) delete hwindow;
 
        hwindow = new TH2F("hwindow", "Hits Window", nch, y_gap - window_R, y_gap + window_R, nch, z_gap - window_R, z_gap + window_R);
 
   */
 
  p_size = b/2.0;
 
  //histoPlate = (TH2F*)gROOT->FindObject("histoPlate"); if(histoPlate) delete histoPlate;
 
  histoPlate = TH2F("histoPlate", ";x [mm];y [mm]", nBins, -p_size, +p_size, nBins, -p_size, +p_size);
 
 
 
  generated = TH2F("generated", ";x [mm];y [mm]", nBins, -p_size, +p_size, nBins, -p_size, +p_size);
 
}
 
 
 
//-----------------------------------------------------------------------------
 
// vrne 1 ce je zadel aktvino povrsino
 
// vrne <1 ce jo zgresi
 
int CDetector::Propagate(CRay in, CRay& out, int draw)
 
// Sledi zarku skozi vodnik. Vrne:                                             
 
//  0, ce zgresi vstopno ploskev MISSED                                              
 
//  1, ce zadane izstopno ploskev HIT                                             
 
// -1, ce se v vodniku ne odbije totalno REFRACTED
 
//  2, enter the light guide, bin 2 of hfate EXIT                                     
 
// -2, ce se ne odbije zaradi koncnega R stranic - no total reflection REFRACTED                             
 
// -3, ce se odbije nazaj in gre nazaj ven skozi sprednjo ploskev BACK_REFLECTED             
 
// +4, ce se absorbira v materialu ABSORBED
 
{
 
  if (dbg) printf("--- Detector::Propagate ---\n");
 
  generated.Fill(in.GetR().y(), in.GetR().z());
 
  //CRay *ray0 = new CRay; ray0->Set(in.GetR(), in.GetN()); ray0->SetColor(col_in);
 
  CRay *rayin = new CRay(in);
 
  rayin->SetColor(col_in);
 
  CRay rayout(in);
 
  rayout.SetColor(col_in);
 
 
 
  const int max_n_points = guide.GetMAXODB() + 2;
 
  TVector3 pointsPlate[max_n_points];
 
  //TVector3 intersection;
 
  Fate fatePlate;
 
  int nPointsPlate;
 
  TPolyLine3D *line3d = new TPolyLine3D(2);
 
  line3d->SetLineWidth(1);
 
  line3d->SetLineColor(4);
 
 
 
  // Draw the plate and propagate the ray through
 
  // check if the ray should be reflected??
 
 
 
  if(_plateOn) {
 
 
 
      fatePlate = plate.propagateRay(*rayin, rayout, &nPointsPlate, pointsPlate);
 
      if(draw) rayin->DrawS(center.x()- _plateWidth, -10.0);
 
      if(draw) {
 
          if(fatePlate == missed) {
 
              rayout.SetColor(col_in);
 
              rayout.DrawS(center.x() - _plateWidth, -10.0);
 
          }
 
          else if(fatePlate == backreflected){
 
              rayout.SetColor(kBlack);
 
              rayout.DrawS(center.x() - _plateWidth, 7.0);
 
              if (dbg) printf("Backreflected at plate!\n");
 
          }
 
          else {
 
              int p_i;
 
              for(p_i = 0; p_i < nPointsPlate-1; p_i++) {
 
                  line3d->SetPoint(0, pointsPlate[p_i].x(), pointsPlate[p_i].y(), pointsPlate[p_i].z());
 
                  line3d->SetPoint(1, pointsPlate[p_i+1].x(), pointsPlate[p_i+1].y(), pointsPlate[p_i+1].z());
 
                  line3d->DrawClone();
 
              }
 
              rayout.DrawS(pointsPlate[p_i].x(), -0.1);
 
              if(fatePlate == noreflection) { // lost on plate side
 
                  rayout.SetColor(col_out);
 
                  rayout.DrawS(pointsPlate[p_i].x(), 10.0);
 
              }
 
          }
 
      }
 
 
 
      if(! (fatePlate == hitExit or fatePlate == refracted) ) {
 
          guide.GetHFate()->Fill(rays);
 
          if (dbg)printf("CDetector::propagate Simulated ray missed the entry surface!\n");
 
          if (fatePlate == backreflected)
 
            guide.GetHFate()->Fill(fatePlate); // reflected back
 
          else
 
            guide.GetHFate()->Fill(noreflection); //lost on plate side
 
          return fatePlate;
 
      }
 
 
 
      //Ray hits light guide
 
      histoPlate.Fill(pointsPlate[0].y(), pointsPlate[0].z()); // entry point
 
 
 
  }
 
  else {
 
      //rayout = rayin;
 
      if(draw) rayout.DrawS(center.x(), -10.0);
 
  }
 
 
 
  // If the ray is not reflected in the plate
 
  // Draw the light guide and propagate the ray through
 
 
 
  //const int max_n_points = guide->GetMAXODB() + 2;
 
  TVector3 points[max_n_points];
 
  TVector3 presecisce;
 
 
 
  int n_points;
 
  int fate_glass;
 
  CRay *ray0 = new CRay(rayout);
 
  // delete rayout; -> creates dangling reference when tries to delete ray0!
 
  //delete rayin; -> delete rayout!
 
  CRay ray1;
 
 
 
  fate = guide.PropagateRay(*ray0, ray1, &n_points, points);
 
  if (dbg) {
 
      if (fate == backreflected) printf("DETECTOR::backreflected\n");
 
  }
 
 
 
  line3d->SetLineColor(col_lg);
 
  int p_i;
 
  if(guide_on) {
 
      if(draw) {
 
          if(fate == missed) {
 
              if (dbg) printf("Detector: fate=missed\n");
 
              TVector3 r = ray1.GetR();
 
              TVector3 k = ray1.GetK();
 
              ray1.Set(r,k);
 
              ray1.DrawS(center.x(), 10.0);
 
          } else {
 
              for(p_i = 0; p_i < n_points-1; p_i++) {
 
                  line3d->SetPoint(0, points[p_i].x(), points[p_i].y(), points[p_i].z());
 
                  line3d->SetPoint(1, points[p_i+1].x(), points[p_i+1].y(), points[p_i+1].z());
 
                  line3d->DrawClone();
 
              }
 
              if(fate != noreflection) {
 
                  if (dbg) printf("Detector: fate != noreflection, fate = %d\n", (int)fate);
 
                  if(glass_on) {/*if(fate == 1)*/ ray1.Draw(points[p_i].x(), center.x() + guide.getD() + glass_d);}
 
                  else {
 
                      ray1.SetColor(col_out);
 
                      ray1.DrawS(points[p_i].x(), 10.0);
 
                  }
 
              }
 
          }
 
      }
 
 
 
 
 
      if(! (fate == hitExit or fate == refracted) ) {
 
          if (dbg) printf("Detector: fate != hit, refracted\n");
 
          out = ray1;
 
          delete ray0;
 
          //delete ray1;
 
          //delete rayout;
 
          delete rayin;
 
          return fate;
 
      }
 
  } else {
 
      if (dbg) printf("Detector: fate = hit or refracted");
 
      ray1 = *ray0;
 
      if(draw) {
 
          //double epoxy = parameters->getGlassD();
 
          if(glass_on) ray1.Draw(center.x(), center.x() + glass_d);
 
          else ray1.DrawS(center.x(), 10.0);
 
      }
 
  }
 
 
 
  fate = missed; // zgresil aktivno povrsino
 
  if(glass_on) {
 
      *ray0 = ray1;
 
      ray1.SetColor(col_rgla);
 
      fate_glass = glass.PropagateRay(*ray0, ray1, &presecisce);
 
      if(fate_glass == REFRACTION) {
 
          hglass.Fill(presecisce.y(), presecisce.z());
 
          if(draw) ray1.DrawS(presecisce.x(), 10.0);
 
          //if(active->TestIntersection(&presecisce, *ray1)) {
 
          //fate = hitExit;
 
          //h-Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
 
          //hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
 
          //}
 
          //if(detector->TestIntersection(&presecisce, *ray1))
 
          //hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
 
          //} else if(fate_glass == REFLECTION) {
 
          else
 
            if(draw) ray1.DrawS(presecisce.x(), 10.0);
 
      }
 
  }
 
 
 
  // Main test: ray and SiPM surface
 
  if(active.TestIntersection(&presecisce, ray1)) {
 
      fate = hitExit;
 
      hactive.Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
 
      hlaser.Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ);
 
  }
 
  // If it is on the same plane as SiPM
 
  if(detector.TestIntersection(&presecisce, ray1))
 
    hdetector.Fill(offsetY + presecisce.y(), offsetZ + presecisce.z());
 
  //}
 
  //} else {
 
  //if(draw) ray1->Draw(presecisce.x(), center.x()+d+window_d);
 
  //}
 
 
 
  out = ray1;
 
  delete ray0;
 
  //delete ray1;
 
  //delete rayout;
 
  delete rayin;
 
  return fate;
 
}
 
 
 
void CDetector::Draw(int width)
 
{
 
  if(guide_on) {
 
      if( TMath::Abs(guide.getN1()-guide.getN2()) < MARGIN ) {
 
          if(_plateOn) plate.drawSkel(col_LG, width);
 
          guide.DrawSkel(col_LG, width);
 
      }
 
      else {
 
          if(_plateOn) plate.draw(4, width);
 
          guide.Draw(col_LG, width);
 
      }
 
  }
 
 
 
  if(glass_on) glass_circle.Draw(col_glass, width);
 
  //window_circle->Draw(col_glass, width);
 
  active.Draw(col_active, width);
 
}
 
 
 
 
 
Plate::Plate(DetectorParameters& parameters)
 
{
 
  TVector3 center = CENTER;
 
  const double b = parameters.getB();
 
  const double n1 = parameters.getN1();
 
  const double n2 = parameters.getN2();
 
  const double t = b/2.;
 
  const double plateWidth = parameters.getPlateWidth();
 
  center.SetX( CENTER.X() - plateWidth );
 
 
 
  plate_edge[0].SetXYZ(0.0, t,-t);
 
  plate_edge[1].SetXYZ(0.0, t, t);
 
  plate_edge[2].SetXYZ(0.0,-t, t);
 
  plate_edge[3].SetXYZ(0.0,-t,-t);
 
  plate_edge[4].SetXYZ(plateWidth, t,-t);
 
  plate_edge[5].SetXYZ(plateWidth, t, t);
 
  plate_edge[6].SetXYZ(plateWidth,-t, t);
 
  plate_edge[7].SetXYZ(plateWidth,-t,-t);
 
 
 
  for(int i = 0; i<8; i++) plate_edge[i] += center;
 
 
 
  sides[0].Set(SURF_REFRA, plate_edge, n1, n2, c_reflectivity);
 
  sides[0].FlipN();
 
 
 
  sides[1].Set(SURF_REFRA, plate_edge[3], plate_edge[2], plate_edge[6], plate_edge[7], n2, n2, c_reflectivity);
 
  sides[2].Set(SURF_REFRA, plate_edge[2], plate_edge[1], plate_edge[5], plate_edge[6], n2, n2, c_reflectivity);
 
  sides[3].Set(SURF_REFRA, plate_edge[1], plate_edge[0], plate_edge[4], plate_edge[5], n2, n2, c_reflectivity);
 
  sides[4].Set(SURF_REFRA, plate_edge[0], plate_edge[3], plate_edge[7], plate_edge[4], n2, n2, c_reflectivity);
 
 
 
  sides[5].Set(SURF_REFRA, &plate_edge[4], n2, n2, c_reflectivity);
 
  sides[5].FlipN();
 
 
 
  for(int i=0; i<6; i++) sides[i].SetFresnel(1);
 
}
 
 
 
void Plate::draw(int color, int width)
 
{
 
  for(int i = 0; i<6; i++) sides[i].Draw(color, width);
 
}
 
 
 
void Plate::drawSkel(int color, int width)
 
{
 
  TPolyLine3D line3d(2);
 
  line3d.SetLineWidth(width);
 
  line3d.SetLineColor(color);
 
 
 
  for(int i=0; i<4; i++) {
 
      line3d.SetPoint(0, plate_edge[i+0].x(), plate_edge[i+0].y(), plate_edge[i+0].z());
 
      line3d.SetPoint(1, plate_edge[i+4].x(), plate_edge[i+4].y(), plate_edge[i+4].z());
 
      line3d.DrawClone();
 
  }
 
}
 
 
 
Fate Plate::propagateRay(CRay in, CRay& out, int *n_points, TVector3 *points)
 
{
 
  CRay ray0;
 
  CRay ray1;
 
  TVector3 vec0, vec1;
 
  Fate fate = enter;
 
  int inters_i = 0;
 
 
 
  ray0 = in;
 
  int n_odb = 0;
 
  int last_hit = 0;
 
  int propagation = 0;
 
 
 
  int result = sides[0].PropagateRay(ray0, ray1, &vec1);
 
  if( !result ) {
 
      // ce -NI- presecisca z vstopno
 
      fate = missed;
 
  } else if(result == REFLECTION) {
 
      if (dbg) printf("PLATE: reflected\n");
 
      ray0 = ray1;
 
      fate = backreflected;
 
  } else {
 
      points[0] = ray1.GetR();
 
      //hfate->Fill(enter);
 
      //hin->Fill(vec1.y(), vec1.z());
 
      while (n_odb++ < MAX_REFLECTIONS) {
 
          ray0 = ray1;
 
          vec0 = vec1;
 
          propagation = 11;
 
          for(inters_i=0; inters_i<6; inters_i++) {
 
              if( inters_i != last_hit) {
 
                  if( sides[inters_i].TestIntersection(&vec1, ray1) ) break;
 
              }
 
          }
 
          points[n_odb] = vec1;
 
          if(inters_i == 0) {
 
              ray0 = ray1;
 
              fate = backreflected;
 
              break;} // backreflection
 
 
 
          propagation = sides[inters_i].PropagateRay(ray0, ray1, &vec1);
 
          if(inters_i == 5) { // successfull exit
 
              fate = hitExit;
 
              //hout->Fill(vec1.y(), vec1.z());
 
              //hnodb_exit->Fill(n_odb-1);
 
              n_odb++;
 
              points[n_odb] = vec1;
 
              ray0 = ray1;
 
              break;
 
          }
 
          if(propagation == 1) {
 
              fate = noreflection; //at side
 
              n_odb++;
 
              points[n_odb] = vec1;
 
              ray0 = ray1;
 
              break;} // no total reflection when should be
 
 
 
          if(propagation == -2) {
 
              fate = noreflection;
 
              break;
 
          } // absorption due to finite reflectivity
 
 
 
          last_hit = inters_i;
 
      }
 
  }
 
 
 
  *n_points = n_odb+1;
 
  out = ray0;
 
  return fate;
 
};