5,20 → 5,20 |
// vector output shortcut |
void printv(TVector3 v) |
{ |
printf("(x,y,z) = (%.4lf, %.4lf, %.4lf)\n", v.x(), v.y(), v.z()); |
printf("(x,y,z) = (%.4lf, %.4lf, %.4lf)\n", v.x(), v.y(), v.z()); |
} |
// TVector3::Rotate does not seem accurate enough |
TVector3 rotatey(TVector3 v, double theta) |
{ |
return TVector3(v.x() * TMath::Cos(theta) + v.z() * TMath::Sin(theta), |
v.y(), |
-v.x() * TMath::Sin(theta) + v.z() * TMath::Cos(theta)); |
return TVector3(v.x() * TMath::Cos(theta) + v.z() * TMath::Sin(theta), |
v.y(), |
-v.x() * TMath::Sin(theta) + v.z() * TMath::Cos(theta)); |
} |
// another shortcut not found in TMath |
int sign(double in) |
{ |
if(in >= 0.0) return 1; |
else return -1; |
if(in >= 0.0) return 1; |
else return -1; |
} |
//================================================================================= |
|
25,13 → 25,13 |
//----------------------------------------------------------------------------- |
void CRay::Set(TVector3 r0, TVector3 n0) |
{ |
r = r0; n = n0.Unit(); |
r = r0; n = n0.Unit(); |
} |
//----------------------------------------------------------------------------- |
//void CRay::Set(double x0, double y0, double z0, double l0, double m0, double n0) |
//{ |
//r.SetXYZ(x0, y0, z0); |
//n.SetXYZ(l0, m0, n0); n = n.Unit(); |
//r.SetXYZ(x0, y0, z0); |
//n.SetXYZ(l0, m0, n0); n = n.Unit(); |
//} |
//----------------------------------------------------------------------------- |
/* |
45,60 → 45,60 |
//----------------------------------------------------------------------------- |
void CRay::Print() |
{ |
printf("---> CRay::Print() <---\n"); |
printf("(x,y,z)=(%.2lf, %.2lf, %.2lf); (l,m,n)=(%.2lf, %.2lf, %.2lf)\n", |
r.x(), r.y(), r.z(), n.x(), n.y(), n.z()); |
printf("---> CRay::Print() <---\n"); |
printf("(x,y,z)=(%.2lf, %.2lf, %.2lf); (l,m,n)=(%.2lf, %.2lf, %.2lf)\n", |
r.x(), r.y(), r.z(), n.x(), n.y(), n.z()); |
} |
//----------------------------------------------------------------------------- |
void CRay::Draw() |
{ |
double t = 50.0; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
//line3d->SetPoint(0, r.x() - t*n.x(), r.y() - t*n.y(), r.z() - t*n.z()); |
line3d->SetPoint(0, r.x(), r.y(), r.z()); |
line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z()); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(color); |
double t = 50.0; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
//line3d->SetPoint(0, r.x() - t*n.x(), r.y() - t*n.y(), r.z() - t*n.z()); |
line3d->SetPoint(0, r.x(), r.y(), r.z()); |
line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z()); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(color); |
|
line3d->Draw(); |
line3d->Draw(); |
} |
//----------------------------------------------------------------------------- |
void CRay::Draw(double x_from, double x_to) |
{ |
double A1, A2; |
double A1, A2; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
|
if(n.x() < MARGIN) { |
A1 = A2 = 0.0; |
} else { |
A1 = (x_from - r.x())/n.x(); |
A2 = (x_to - r.x())/n.x(); |
} |
|
line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z()); |
line3d->SetPoint(1, x_to, A2*n.y()+r.y(), A2*n.z()+r.z()); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(color); |
if(n.x() < MARGIN) { |
A1 = A2 = 0.0; |
} else { |
A1 = (x_from - r.x())/n.x(); |
A2 = (x_to - r.x())/n.x(); |
} |
|
line3d->Draw(); |
line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z()); |
line3d->SetPoint(1, x_to, A2*n.y()+r.y(), A2*n.z()+r.z()); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(color); |
|
line3d->Draw(); |
} |
//----------------------------------------------------------------------------- |
void CRay::DrawS(double x_from, double t) |
{ |
double A1; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
double A1; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
|
if(n.x() < MARGIN) |
A1 = 0.0; |
else |
A1 = (x_from - r.x())/n.x(); |
|
line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z()); |
line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z()); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(color); |
if(n.x() < MARGIN) |
A1 = 0.0; |
else |
A1 = (x_from - r.x())/n.x(); |
|
line3d->Draw(); |
line3d->SetPoint(0, x_from, A1*n.y()+r.y(), A1*n.z()+r.z()); |
line3d->SetPoint(1, r.x() + t*n.x(), r.y() + t*n.y(), r.z() + t*n.z()); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(color); |
|
line3d->Draw(); |
} |
//================================================================================= |
|
105,96 → 105,96 |
|
//================================================================================= |
CPlane4::CPlane4() : |
n(TVector3(1.0, 0.0, 0.0)), |
A(0), |
B(0), |
C(0), |
D(0) |
n(TVector3(1.0, 0.0, 0.0)), |
A(0), |
B(0), |
C(0), |
D(0) |
{ r[0] = TVector3(0.0,-1.0,-1.0); |
r[1] = TVector3(0.0,-1.0, 1.0); |
r[2] = TVector3(0.0, 1.0, 1.0); |
r[3] = TVector3(0.0, 1.0,-1.0); |
for(int i=0;i<4;i++) edge[i] = TVector3(0,0,0); |
for(int i=0;i<4;i++) angle_r[i] = 0; |
r[1] = TVector3(0.0,-1.0, 1.0); |
r[2] = TVector3(0.0, 1.0, 1.0); |
r[3] = TVector3(0.0, 1.0,-1.0); |
for(int i=0;i<4;i++) edge[i] = TVector3(0,0,0); |
for(int i=0;i<4;i++) angle_r[i] = 0; |
}; |
//----------------------------------------------------------------------------- |
CPlane4::CPlane4(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4) |
{ |
//Set(r1, r2, r3, r4); |
//} |
//----------------------------------------------------------------------------- |
// za izracun parametrov ravnine je en vektor prevec, vendar tega |
// rabim kot zadnji vogal poligona |
//void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4) |
//{ |
double x1,y1,z1, x2,y2,z2, x3,y3,z3; |
|
x1 = r1.x(); y1 = r1.y(); z1 = r1.z(); |
x2 = r2.x(); y2 = r2.y(); z2 = r2.z(); |
x3 = r3.x(); y3 = r3.y(); z3 = r3.z(); |
//Set(r1, r2, r3, r4); |
//} |
//----------------------------------------------------------------------------- |
// za izracun parametrov ravnine je en vektor prevec, vendar tega |
// rabim kot zadnji vogal poligona |
//void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4) |
//{ |
double x1,y1,z1, x2,y2,z2, x3,y3,z3; |
|
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1); |
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3); |
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1); |
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2); |
x1 = r1.x(); y1 = r1.y(); z1 = r1.z(); |
x2 = r2.x(); y2 = r2.y(); z2 = r2.z(); |
x3 = r3.x(); y3 = r3.y(); z3 = r3.z(); |
|
r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4; |
n.SetXYZ(A, B, C); |
n = n.Unit(); |
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1); |
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3); |
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1); |
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2); |
|
for(int i=0;i<4;i++) |
edge[i] = r[i-3 ? i+1 : 0] - r[i]; |
r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4; |
n.SetXYZ(A, B, C); |
n = n.Unit(); |
|
for(int i=0;i<4;i++) |
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) )); |
for(int i=0;i<4;i++) |
edge[i] = r[i-3 ? i+1 : 0] - r[i]; |
|
for(int i=0;i<4;i++) |
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) )); |
}; |
|
void CPlane4::Set(TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4) |
{ |
double x1,y1,z1, x2,y2,z2, x3,y3,z3; |
|
x1 = r1.x(); y1 = r1.y(); z1 = r1.z(); |
x2 = r2.x(); y2 = r2.y(); z2 = r2.z(); |
x3 = r3.x(); y3 = r3.y(); z3 = r3.z(); |
|
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1); |
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3); |
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1); |
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2); |
x1 = r1.x(); y1 = r1.y(); z1 = r1.z(); |
x2 = r2.x(); y2 = r2.y(); z2 = r2.z(); |
x3 = r3.x(); y3 = r3.y(); z3 = r3.z(); |
|
r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4; |
n.SetXYZ(A, B, C); |
n = n.Unit(); |
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1); |
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3); |
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1); |
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2); |
|
for(int i=0;i<4;i++) |
edge[i] = r[i-3 ? i+1 : 0] - r[i]; |
r[0] = r1; r[1] = r2; r[2] = r3; r[3] = r4; |
n.SetXYZ(A, B, C); |
n = n.Unit(); |
|
for(int i=0;i<4;i++) |
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) )); |
for(int i=0;i<4;i++) |
edge[i] = r[i-3 ? i+1 : 0] - r[i]; |
|
for(int i=0;i<4;i++) |
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) )); |
}; |
|
CPlane4::CPlane4(TVector3 *vr) |
{ |
double x1,y1,z1, x2,y2,z2, x3,y3,z3; |
|
x1 = vr[0].x(); y1 = vr[0].y(); z1 = vr[0].z(); |
x2 = vr[1].x(); y2 = vr[1].y(); z2 = vr[1].z(); |
x3 = vr[2].x(); y3 = vr[2].y(); z3 = vr[2].z(); |
|
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1); |
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3); |
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1); |
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2); |
x1 = vr[0].x(); y1 = vr[0].y(); z1 = vr[0].z(); |
x2 = vr[1].x(); y2 = vr[1].y(); z2 = vr[1].z(); |
x3 = vr[2].x(); y3 = vr[2].y(); z3 = vr[2].z(); |
|
r[0] = vr[0]; r[1] = vr[1]; r[2] = vr[2]; r[3] = vr[3]; |
n.SetXYZ(A, B, C); |
n = n.Unit(); |
A = y3*(z1 - z2) + y1*(z2 - z3) + y2*(z3 - z1); |
B = x3*(z2 - z1) + x1*(z3 - z2) + x2*(z1 - z3); |
C = x3*(y1 - y2) + x1*(y2 - y3) + x2*(y3 - y1); |
D = y3*(x1*z2 - x2*z1) + x3*(y2*z1 - y1*z2) + z3*(x2*y1 - x1*y2); |
|
for(int i=0;i<4;i++) |
edge[i] = r[i-3 ? i+1 : 0] - r[i]; |
r[0] = vr[0]; r[1] = vr[1]; r[2] = vr[2]; r[3] = vr[3]; |
n.SetXYZ(A, B, C); |
n = n.Unit(); |
|
for(int i=0;i<4;i++) |
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) )); |
for(int i=0;i<4;i++) |
edge[i] = r[i-3 ? i+1 : 0] - r[i]; |
|
for(int i=0;i<4;i++) |
angle_r[i] = TMath::ACos(/*TMath::Abs*/( ((-edge[i ? i-1 : 3]).Unit()) * (edge[i].Unit()) )); |
}; |
//----------------------------------------------------------------------------- |
// posce presecisce !neskoncne! ravnine s premico (class CRay) |
201,37 → 201,37 |
// ce najde presecisce vrne 1 |
int CPlane4::GetIntersection(TVector3 *vec, CRay ray) |
{ |
TVector3 N; //nenormirani vektor (A,B,C) |
double num, den; //stevec, imenovalec |
double t; |
TVector3 tmp; |
TVector3 N; //nenormirani vektor (A,B,C) |
double num, den; //stevec, imenovalec |
double t; |
TVector3 tmp; |
|
N.SetXYZ(A,B,C); |
|
num = N*ray.GetR() + D; |
den = N*ray.GetN(); |
N.SetXYZ(A,B,C); |
|
if (dbg) printf("t = %6.3lf / %6.3lf = %6.3lf\n", num, den, num/den); |
num = N*ray.GetR() + D; |
den = N*ray.GetN(); |
|
//if(den == 0) |
if(TMath::Abs(den) < MARGIN) { |
//if(num == 0) |
if(TMath::Abs(num) < MARGIN) { |
if (dbg) printf("The ray is on the surface!\n"); |
return 0; //return 2; // premica lezi na ravnini |
} |
else { |
if (dbg) printf("The ray is parallel to the surface!\n"); |
return 0; // ni presecisca |
} |
} |
|
t = num / den; |
|
tmp = ray.GetR(); |
tmp -= t*ray.GetN(); |
*vec = tmp; |
return 1; |
if (dbg) printf("t = %6.3lf / %6.3lf = %6.3lf\n", num, den, num/den); |
|
//if(den == 0) |
if(TMath::Abs(den) < MARGIN) { |
//if(num == 0) |
if(TMath::Abs(num) < MARGIN) { |
if (dbg) printf("The ray is on the surface!\n"); |
return 0; //return 2; // premica lezi na ravnini |
} |
else { |
if (dbg) printf("The ray is parallel to the surface!\n"); |
return 0; // ni presecisca |
} |
} |
|
t = num / den; |
|
tmp = ray.GetR(); |
tmp -= t*ray.GetN(); |
*vec = tmp; |
return 1; |
} |
//----------------------------------------------------------------------------- |
// ali je vektor vec, ki lezi na ravnini skupaj z e1 in e2, med njima |
239,20 → 239,20 |
int CPlane4::IsInTri(TVector3 vec, TVector3 e1, TVector3 e2, double angle) |
{ |
double angle_ve1, angle_ve2; |
|
if(dbg) printf("--- CPlane4::IsInTri ---\n"); |
|
angle_ve1 = TMath::ACos(/*TMath::Abs*/( (e1.Unit()) * (vec.Unit()) )); |
angle_ve2 = TMath::ACos(/*TMath::Abs*/( (e2.Unit()) * (vec.Unit()) )); |
if(dbg) printf("--- CPlane4::IsInTri ---\n"); |
|
if(dbg) |
{ |
printf("angle_ve1 = %lf\n", angle_ve1*DEGREE); |
printf("angle_ve2 = %lf\n", angle_ve2*DEGREE); |
printf("angle_sum = %lf\n", (angle_ve1 + angle_ve2)*DEGREE); |
printf(" angle_r = %lf\n", angle*DEGREE); |
} |
angle_ve1 = TMath::ACos(/*TMath::Abs*/( (e1.Unit()) * (vec.Unit()) )); |
angle_ve2 = TMath::ACos(/*TMath::Abs*/( (e2.Unit()) * (vec.Unit()) )); |
|
if(dbg) |
{ |
printf("angle_ve1 = %lf\n", angle_ve1*DEGREE); |
printf("angle_ve2 = %lf\n", angle_ve2*DEGREE); |
printf("angle_sum = %lf\n", (angle_ve1 + angle_ve2)*DEGREE); |
printf(" angle_r = %lf\n", angle*DEGREE); |
} |
|
bool difference = (MARGIN < TMath::Abs(angle - (angle_ve1 + angle_ve2))); |
if (dbg) printf(" MARGIN < Difference = %d\n", difference); |
return (int) !difference; |
264,61 → 264,61 |
{ |
int status; |
|
if(dbg) printf("--- CPlane4::IsVectorIn ---\n"); |
|
for(int i=0;i<3;i++) |
{ |
status = IsInTri(vec - r[i], edge[i], -edge[i ? i-1 : 3], angle_r[i]); |
if(dbg) printf(" [%d] vec is %s\n", i, status ? "inside" : "outside"); |
if(!status) return 0; |
} |
if(dbg) printf("--- CPlane4::IsVectorIn ---\n"); |
|
return 1; |
for(int i=0;i<3;i++) |
{ |
status = IsInTri(vec - r[i], edge[i], -edge[i ? i-1 : 3], angle_r[i]); |
if(dbg) printf(" [%d] vec is %s\n", i, status ? "inside" : "outside"); |
if(!status) return 0; |
} |
|
return 1; |
} |
//----------------------------------------------------------------------------- |
int CPlane4::TestIntersection(CRay in) |
{ |
TVector3 tmp; |
TVector3 tmp; |
|
if( GetIntersection(&tmp, in) ) |
if( IsVectorIn(tmp) ) |
return 1; |
|
return 0; |
if( GetIntersection(&tmp, in) ) |
if( IsVectorIn(tmp) ) |
return 1; |
|
return 0; |
} |
//----------------------------------------------------------------------------- |
int CPlane4::TestIntersection(TVector3 *vec, CRay in) |
{ |
TVector3 tmp; |
TVector3 tmp; |
|
if( GetIntersection(&tmp, in) ) |
if( IsVectorIn(tmp) ) { |
*vec = tmp; |
return 1; |
} |
|
return 0; |
if( GetIntersection(&tmp, in) ) |
if( IsVectorIn(tmp) ) { |
*vec = tmp; |
return 1; |
} |
|
return 0; |
} |
//----------------------------------------------------------------------------- |
void CPlane4::Print() |
{ |
printf("--- CPlane4::Print() ---\n"); |
printf(" r=(%.2lf, %.2lf, %.2lf); n=(%.2lf, %.2lf, %.2lf); ", |
r[0].x(), r[0].y(), r[0].z(), n.x(), n.y(), n.z()); |
printf( "(A,B,C,D)=(%.2lf, %.2lf, %.2lf, %.2lf) \n", A, B, C, D); |
for(int i=0;i<4;i++) printf(" edge[%d] = (%lf, %lf, %lf)\n", i, edge[i].x(), edge[i].y(), edge[i].z()); |
for(int i=0;i<4;i++) printf(" angle[%d] = %lf\n", i, angle_r[i]*DEGREE); |
printf("--- CPlane4::Print() ---\n"); |
printf(" r=(%.2lf, %.2lf, %.2lf); n=(%.2lf, %.2lf, %.2lf); ", |
r[0].x(), r[0].y(), r[0].z(), n.x(), n.y(), n.z()); |
printf( "(A,B,C,D)=(%.2lf, %.2lf, %.2lf, %.2lf) \n", A, B, C, D); |
for(int i=0;i<4;i++) printf(" edge[%d] = (%lf, %lf, %lf)\n", i, edge[i].x(), edge[i].y(), edge[i].z()); |
for(int i=0;i<4;i++) printf(" angle[%d] = %lf\n", i, angle_r[i]*DEGREE); |
} |
//----------------------------------------------------------------------------- |
void CPlane4::Draw(int color, int width) |
{ |
TPolyLine3D *line3d = new TPolyLine3D(5); |
TPolyLine3D *line3d = new TPolyLine3D(5); |
|
for(int i=0;i<4;i++) line3d->SetPoint(i, r[i].x(), r[i].y(), r[i].z()); |
line3d->SetPoint(4, r[0].x(), r[0].y(), r[0].z()); |
line3d->SetLineWidth(width); line3d->SetLineColor(color); |
for(int i=0;i<4;i++) line3d->SetPoint(i, r[i].x(), r[i].y(), r[i].z()); |
line3d->SetPoint(4, r[0].x(), r[0].y(), r[0].z()); |
line3d->SetLineWidth(width); line3d->SetLineColor(color); |
|
line3d->Draw(); |
line3d->Draw(); |
} |
//================================================================================= |
|
325,58 → 325,58 |
|
//================================================================================= |
CSurface::CSurface(int type0): |
type(type0) |
type(type0) |
{ |
TVector3 vr[4]; |
TDatime now; |
TVector3 vr[4]; |
TDatime now; |
|
vr[0].SetXYZ(0.0,-1.0,-1.0); |
vr[1].SetXYZ(0.0,-1.0, 1.0); |
vr[2].SetXYZ(0.0, 1.0, 1.0); |
vr[3].SetXYZ(0.0, 1.0,-1.0); |
//CPlane4::Set(vr); |
SetIndex(1.0, 1.5); |
|
reflection = c_reflectivity; |
rand.SetSeed(now.Get()); |
|
SetFresnel(); |
vr[0].SetXYZ(0.0,-1.0,-1.0); |
vr[1].SetXYZ(0.0,-1.0, 1.0); |
vr[2].SetXYZ(0.0, 1.0, 1.0); |
vr[3].SetXYZ(0.0, 1.0,-1.0); |
//CPlane4::Set(vr); |
SetIndex(1.0, 1.5); |
|
reflection = c_reflectivity; |
rand.SetSeed(now.Get()); |
|
SetFresnel(); |
} |
//----------------------------------------------------------------------------- |
CSurface::CSurface(int type0, TVector3 r1, TVector3 r2, TVector3 r3, TVector3 r4, double n10, double n20, double reflectivity) |
{ |
TDatime now; |
|
type = type0; CPlane4::Set(r1, r2, r3, r4); |
SetIndex(n10, n20); |
|
reflection = reflectivity; |
rand.SetSeed(now.Get()); |
|
SetFresnel(); |
TDatime now; |
|
type = type0; CPlane4::Set(r1, r2, r3, r4); |
SetIndex(n10, n20); |
|
reflection = reflectivity; |
rand.SetSeed(now.Get()); |
|
SetFresnel(); |
} |
//----------------------------------------------------------------------------- |
CSurface::CSurface(int type0, TVector3 *vr, double n10, double n20, double reflectivity) |
{ |
TDatime now; |
|
type = type0; CPlane4::Set(vr); |
SetIndex(n10, n20); |
|
reflection = reflectivity; |
rand.SetSeed(now.Get()); |
|
SetFresnel(); |
TDatime now; |
|
type = type0; CPlane4::Set(vr); |
SetIndex(n10, n20); |
|
reflection = reflectivity; |
rand.SetSeed(now.Get()); |
|
SetFresnel(); |
} |
//----------------------------------------------------------------------------- |
void CSurface::SetIndex(double n10, double n20) |
{ |
n1 = n10; n2 = n20; n1_n2 = n1/n2; |
|
if(n1 > n2) |
cosTtotal = TMath::Sqrt( 1 - TMath::Power(n2/n1, 2) ); |
else |
cosTtotal = 0.0; |
n1 = n10; n2 = n20; n1_n2 = n1/n2; |
|
if(n1 > n2) |
cosTtotal = TMath::Sqrt( 1 - TMath::Power(n2/n1, 2) ); |
else |
cosTtotal = 0.0; |
} |
//----------------------------------------------------------------------------- |
// sprejme zarek, vrne uklonjen/odbit zarek in presecisce |
389,274 → 389,285 |
double cosTt; // transmited ray angle |
TVector3 intersect, transmit; |
|
if( !(GetIntersection(&intersect, in) == 1) ) |
return 0; |
|
*intersection = intersect; |
if( !IsVectorIn(intersect) ) |
return 0; |
|
// --------------- Fresnel ---------------------------------------------------- |
// R_f = a_te * R_te + a_tm * R_tm |
// e - electrical/perependicular |
// m - magnetic polarization/parallel |
double r_te=0; |
double r_tm=0; |
double R_te=0; // s reflection coefficient |
double R_tm=0; // p reflection coefficient |
double R_f = 0.0; |
double a_te = 0.0; // s-wave amplitude, cos Alpha |
double a_tm = 0.0; // p-wave amplitude, sin Alpha |
TVector3 v_te; // unit s-polarization vector |
TVector3 v_tm; // unit p-polarization vector |
TVector3 v_tm_t;// transmited polarization parallel with the plane of incidence |
TVector3 pol_t = in.GetP(); // transmited polarization |
int sign_n; // sign of normal direction vs. inbound ray |
double cosTN; // debug |
|
if(fresnel) { |
// p-polarization unit vector v_te |
// is in the plane orthogonal to the plane of incidence |
// defined as the plane spanned by |
// incident surface vector n and wave vector k |
// k in this notation is in.GetN() |
v_te = n.Cross(in.GetN()); |
v_te = v_te.Unit(); |
v_tm = -v_te.Cross(in.GetN()); |
v_tm = v_tm.Unit(); |
if(dbg) { |
printf(" v_te = "); printv(v_te); |
printf(" v_tm = "); printv(v_tm); |
} |
|
double cosAf = v_te * in.GetP(); |
if(dbg) printf(" cosAf = %lf (Af = %lf)\n", cosAf, TMath::ACos(cosAf)*DEGREE); |
|
a_te = cosAf; |
a_tm = TMath::Sqrt(1 - cosAf*cosAf); |
if(dbg) printf(" a_te = %lf, a_tm = %lf\n", a_te, a_tm); |
} |
// ---------------------------------------------------------------------------- |
|
// reflection probability |
double p_ref = rand.Uniform(0.0, 1.0); |
|
if(type == SURF_TOTAL) type = SURF_REFRA; |
switch(type){ |
// ---------------------------------------------------------------------------- |
// --------------- refraction from n1 to n2 ----------------------------------- |
// ---------------------------------------------------------------------------- |
case SURF_REFRA: |
cosTi = in.GetN() * n; |
if(dbg) printf(" cosTi = %lf (Ti = %lf)\n", cosTi, TMath::ACos(cosTi)*DEGREE); |
sign_n = -sign(cosTi); |
if(dbg) printf(" sign_n = %d\n", sign_n); |
cosTi = TMath::Abs(cosTi); |
|
// Check if there can be total reflection: n1 > n2 |
if(N1_N2(-sign_n) < 1.0) |
cosTtotal = TMath::Sqrt( 1 - TMath::Power(N1_N2(-sign_n), 2) ); |
else |
cosTtotal = 0.0; |
|
if(dbg) printf(" cosTtotal = %lf (Ttotal = %lf)\n", cosTtotal, TMath::ACos(cosTtotal)*DEGREE); |
// reflection dependance on polarization missing |
// reflection hardcoded to 0.96 |
if (dbg) printf(" reflection probability = %f\n", p_ref); |
|
// If n1>n2 and theta>thetaCritical, total reflection |
if(cosTi < cosTtotal) { |
if(dbg) printf(" TOTAL\n"); |
transmit = in.GetN() + sign_n*2*cosTi*n; |
|
if(dbg) { |
cosTN = TMath::Abs(transmit.Unit() * n); |
printf(" cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE); |
} |
out->Set(intersect, transmit); |
|
pol_t = -in.GetP() + sign_n*2*cosTi*n; |
out->SetPolarization(pol_t); |
return REFLECTION; |
} else { |
// reflection or refraction according to Fresnel equations |
if(dbg) printf(" REFRACTION\n"); |
if(dbg) printf(" N1_N2(sign_n) = %lf\n", N1_N2(sign_n)); |
cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2))); |
if(dbg) printf(" cosTt = %lf (Tt = %lf) \n", cosTt, TMath::ACos(cosTt)*DEGREE); |
|
transmit = N1_N2(sign_n)*in.GetN() + sign_n*(N1_N2(sign_n)*cosTi - cosTt)*n; |
if(dbg) {printf(" transmit.Unit() = "); printv(transmit.Unit());} |
if(dbg) { |
cosTN = transmit.Unit() * n; |
printf(" cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE); |
} |
|
//if(cosTi<=cosTtotal) cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2))); |
//if(fresnel) { |
r_te = (n1*cosTi - n2*cosTt)/(n1*cosTi + n2*cosTt); // transverse |
r_tm = (n2*cosTi - n1*cosTt)/(n1*cosTt + n2*cosTi); // paralel |
|
if(dbg) printf(" r_te = %lf, r_tm = %lf\n", r_te, r_tm); |
|
// transmited polarization |
v_tm_t = -v_te.Cross(transmit); |
v_tm_t = v_tm_t.Unit(); |
pol_t = a_te * (1.0 - TMath::Abs(r_te)) * v_te + a_tm * (1.0 - TMath::Abs(r_tm)) * v_tm_t; |
|
if(dbg) { |
printf(" v_tm_t = "); printv(v_tm_t); |
printf(" pol_t = "); printv(pol_t); |
} |
|
if( !(GetIntersection(&intersect, in) == 1) ) |
return 0; |
|
*intersection = intersect; |
if( !IsVectorIn(intersect) ) |
return 0; |
|
// --------------- Fresnel ---------------------------------------------------- |
// R_f = a_te * R_te + a_tm * R_tm |
// e - electrical/perependicular |
// m - magnetic polarization/parallel |
double r_te=0; |
double r_tm=0; |
double R_te=0; // s reflection coefficient |
double R_tm=0; // p reflection coefficient |
double R_f = 0.0; |
double a_te = 0.0; // s-wave amplitude, cos Alpha |
double a_tm = 0.0; // p-wave amplitude, sin Alpha |
TVector3 v_te; // unit s-polarization vector |
TVector3 v_tm; // unit p-polarization vector |
TVector3 v_tm_t;// transmited polarization parallel with the plane of incidence |
TVector3 pol_t = in.GetP(); // transmited polarization |
int sign_n; // sign of normal direction vs. inbound ray |
double cosTN; // debug |
|
if(fresnel) { |
// p-polarization unit vector v_te |
// is in the plane orthogonal to the plane of incidence |
// defined as the plane spanned by |
// incident surface vector n and wave vector k |
// k in this notation is in.GetN() |
v_te = n.Cross(in.GetN()); |
v_te = v_te.Unit(); |
v_tm = -v_te.Cross(in.GetN()); |
v_tm = v_tm.Unit(); |
if(dbg) { |
printf(" v_te = "); printv(v_te); |
printf(" v_tm = "); printv(v_tm); |
} |
|
double cosAf = v_te * in.GetP(); |
if(dbg) printf(" cosAf = %lf (Af = %lf)\n", cosAf, TMath::ACos(cosAf)*DEGREE); |
|
a_te = cosAf; |
a_tm = TMath::Sqrt(1 - cosAf*cosAf); |
if(dbg) printf(" a_te = %lf, a_tm = %lf\n", a_te, a_tm); |
} |
// ---------------------------------------------------------------------------- |
|
// reflection probability |
double p_ref = rand.Uniform(0.0, 1.0); |
|
if(type == SURF_TOTAL) type = SURF_REFRA; |
switch(type){ |
// ---------------------------------------------------------------------------- |
// --------------- refraction from n1 to n2 ----------------------------------- |
// ---------------------------------------------------------------------------- |
case SURF_REFRA: |
cosTi = in.GetN() * n; |
if(dbg) printf(" cosTi = %lf (Ti = %lf)\n", cosTi, TMath::ACos(cosTi)*DEGREE); |
sign_n = -sign(cosTi); |
if(dbg) printf(" sign_n = %d\n", sign_n); |
cosTi = TMath::Abs(cosTi); |
|
// Check if there can be total reflection: n1 > n2 |
if(N1_N2(-sign_n) < 1.0) |
cosTtotal = TMath::Sqrt( 1 - TMath::Power(N1_N2(-sign_n), 2) ); |
else |
cosTtotal = 0.0; |
|
if(dbg) printf(" cosTtotal = %lf (Ttotal = %lf)\n", cosTtotal, TMath::ACos(cosTtotal)*DEGREE); |
// reflection dependance on polarization missing |
// reflection hardcoded to 0.96 |
if (dbg) printf(" reflection probability = %f\n", p_ref); |
|
// If n1>n2 and theta>thetaCritical, total reflection |
if(cosTi < cosTtotal) { |
if(dbg) printf(" TOTAL\n"); |
transmit = in.GetN() + sign_n*2*cosTi*n; |
|
if(dbg) { |
cosTN = TMath::Abs(transmit.Unit() * n); |
printf(" cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE); |
} |
out->Set(intersect, transmit); |
|
// Shift? |
pol_t = -in.GetP() + sign_n*2*cosTi*n; |
out->SetPolarization(pol_t); |
return REFLECTION; |
} else { |
// reflection or refraction according to Fresnel equations |
if(dbg) printf(" REFRACTION\n"); |
if(dbg) printf(" N1_N2(sign_n) = %lf\n", N1_N2(sign_n)); |
cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2))); |
if(dbg) printf(" cosTt = %lf (Tt = %lf) \n", cosTt, TMath::ACos(cosTt)*DEGREE); |
|
transmit = N1_N2(sign_n)*in.GetN() + sign_n*(N1_N2(sign_n)*cosTi - cosTt)*n; |
if(dbg) {printf(" transmit.Unit() = "); printv(transmit.Unit());} |
if(dbg) { |
cosTN = transmit.Unit() * n; |
printf(" cosTN = %lf (TN = %lf) (Abs(TN) = %lf)\n", cosTN, TMath::ACos(cosTN)*DEGREE, TMath::ACos(TMath::Abs(cosTN))*DEGREE); |
} |
|
//if(cosTi<=cosTtotal) cosTt = TMath::Sqrt(1 - TMath::Power(N1_N2(sign_n), 2)*(1 - TMath::Power(cosTi, 2))); |
//if(fresnel) { |
r_te = (n1*cosTi - n2*cosTt)/(n1*cosTi + n2*cosTt); // transverse |
r_tm = (n2*cosTi - n1*cosTt)/(n1*cosTt + n2*cosTi); // paralel |
|
if(dbg) printf(" r_te = %lf, r_tm = %lf\n", r_te, r_tm); |
|
// transmited polarization |
v_tm_t = -v_te.Cross(transmit); |
v_tm_t = v_tm_t.Unit(); |
pol_t = a_te * (1.0 - TMath::Abs(r_te)) * v_te + a_tm * (1.0 - TMath::Abs(r_tm)) * v_tm_t; |
|
if(dbg) { |
printf(" v_tm_t = "); printv(v_tm_t); |
printf(" pol_t = "); printv(pol_t); |
} |
|
// Fresnel coefficients |
R_te = TMath::Power(r_te, 2); |
R_tm = TMath::Power(r_tm, 2); |
R_f = a_te*a_te*R_te + a_tm*a_tm*R_tm; |
|
if (dbg) printf(" R_te = %lf, R_tm = %lf, R_f = %lf\n", R_te, R_tm, R_f); |
} |
|
if(p_ref >= R_f) { // se lomi |
if (dbg) printf(" SURFACE REFRACTED. Return.\n"); |
out->Set(intersect, transmit); |
out->SetPolarization(pol_t); |
return REFRACTION; |
} else { // se odbije |
if (dbg) printf(" SURFACE REFLECTED. p_ref=%f, R_f=%f\n", p_ref, R_f); |
transmit = in.GetN() + sign_n*2*cosTi*n; |
out->Set(intersect, transmit); |
pol_t = -in.GetP() + sign_n*2*cosTi*n; |
out->SetPolarization(pol_t); |
return REFLECTION; |
} |
|
//} |
break; |
|
// ---------------------------------------------------------------------------- |
// --------------- reflection at "reflection" probability --------------------- |
// ---------------------------------------------------------------------------- |
case SURF_REFLE: |
p_ref = rand.Uniform(0.0, 1.0); |
if(p_ref < reflection) { // se odbije |
cosTi = in.GetN() * n; |
transmit = in.GetN() - 2*cosTi*n; |
out->Set(intersect, transmit); |
return REFLECTION; //sdhfvjhsdbfjhsdbcvjhsb |
} else { // se ne odbije |
transmit = in.GetN(); |
out->Set(intersect, transmit); |
return ABSORBED; |
} |
break; |
|
// total reflection from n1 to n2 with R probbability |
case SURF_IMPER: |
p_ref = rand.Uniform(0.0, 1.0); |
if(p_ref < reflection) { // se odbije |
cosTi = in.GetN() * n; |
if(TMath::Abs(cosTi) < cosTtotal) { // totalni odboj |
transmit = in.GetN() - 2*cosTi*n; |
out->Set(intersect, transmit); |
} else { // ni tot. odboja |
transmit = in.GetN(); |
out->Set(intersect, transmit); |
return ABSORBED; |
} |
} else { // se ne odbije |
transmit = in.GetN(); |
out->Set(intersect, transmit); |
return ABSORBED; |
} |
break; |
R_te = TMath::Power(r_te, 2); |
R_tm = TMath::Power(r_tm, 2); |
R_f = a_te*a_te*R_te + a_tm*a_tm*R_tm; |
|
default: |
*out = in; |
break; |
} |
if (dbg) printf(" R_te = %lf, R_tm = %lf, R_f = %lf\n", R_te, R_tm, R_f); |
} |
|
return REFRACTION; |
if(p_ref >= R_f) { // se lomi |
if (dbg) printf(" SURFACE REFRACTED. Return.\n"); |
out->Set(intersect, transmit); |
out->SetPolarization(pol_t); |
return REFRACTION; |
} else { // se odbije |
if (dbg) printf(" SURFACE REFLECTED. p_ref=%f, R_f=%f\n", p_ref, R_f); |
transmit = in.GetN() + sign_n*2*cosTi*n; |
out->Set(intersect, transmit); |
pol_t = -in.GetP() + sign_n*2*cosTi*n; |
out->SetPolarization(pol_t); |
return REFLECTION; |
} |
|
//} |
break; |
|
// ---------------------------------------------------------------------------- |
// --------------- reflection at "reflection" probability --------------------- |
// ---------------------------------------------------------------------------- |
case SURF_REFLE: |
p_ref = rand.Uniform(0.0, 1.0); |
if(p_ref < reflection) { // se odbije |
cosTi = in.GetN() * n; |
transmit = in.GetN() - 2*cosTi*n; |
out->Set(intersect, transmit); |
return REFLECTION; //sdhfvjhsdbfjhsdbcvjhsb |
} else { // se ne odbije |
transmit = in.GetN(); |
out->Set(intersect, transmit); |
return ABSORBED; |
} |
break; |
|
// total reflection from n1 to n2 with R probbability |
case SURF_IMPER: |
p_ref = rand.Uniform(0.0, 1.0); |
if(p_ref < reflection) { // se odbije |
cosTi = in.GetN() * n; |
if(TMath::Abs(cosTi) < cosTtotal) { // totalni odboj |
transmit = in.GetN() - 2*cosTi*n; |
out->Set(intersect, transmit); |
} else { // ni tot. odboja |
transmit = in.GetN(); |
out->Set(intersect, transmit); |
return ABSORBED; |
} |
} else { // se ne odbije |
transmit = in.GetN(); |
out->Set(intersect, transmit); |
return ABSORBED; |
} |
break; |
|
default: |
*out = in; |
break; |
} |
|
return REFRACTION; |
} |
//================================================================================= |
|
|
//================================================================================= |
Guide::Guide(TVector3 center0, DetectorParameters ¶meters) |
Guide::Guide(TVector3 center0, DetectorParameters ¶meters) : |
_d(parameters.getD()), |
_n1(parameters.getN1()), |
_n2(parameters.getN2()), |
_n3(parameters.getN3()), |
_r(c_reflectivity), |
_absorption(0), |
_A(0), |
_badCoupling(parameters.badCoupling()) |
{ |
double t; |
double t; |
TDatime now; |
rand.SetSeed(now.Get()); |
center = center0; |
double b = parameters.getB(); |
double a = parameters.getA(); |
// if PlateOn, then n0 = n3 (optical grease), else = n1 (air) |
//double n0 = (parameters.getPlateOn() ? parameters.getN3(): n1); |
double n0 = (parameters.getPlateOn() ? _n2 : _n1); |
int fresnel = parameters.getFresnel(); |
|
TDatime now; |
rand.SetSeed(now.Get()); |
// light guide edges |
t = b/2.0; |
vodnik_edge[0].SetXYZ(0.0, t,-t); |
vodnik_edge[1].SetXYZ(0.0, t, t); |
vodnik_edge[2].SetXYZ(0.0,-t, t); |
vodnik_edge[3].SetXYZ(0.0,-t,-t); |
t = a/2.0; |
vodnik_edge[4].SetXYZ(_d, t,-t); |
vodnik_edge[5].SetXYZ(_d, t, t); |
vodnik_edge[6].SetXYZ(_d,-t, t); |
vodnik_edge[7].SetXYZ(_d,-t,-t); |
|
center = center0; |
double b = parameters.getB(); |
double a = parameters.getA(); |
_d = parameters.getD(); |
n1 = parameters.getN1(); |
n2 = parameters.getN2(); |
// if PlateOn, then n0 = n3 (optical grease), else = n1 (air) |
//double n0 = (parameters.getPlateOn() ? parameters.getN3(): n1); |
double n0 = (parameters.getPlateOn() ? n2 : n1); |
n3 = parameters.getN3(); |
_r = c_reflectivity; |
int fresnel = parameters.getFresnel(); |
for(int i = 0; i<8; i++) vodnik_edge[i] += center; |
|
// light guide edges |
t = b/2.0; |
vodnik_edge[0].SetXYZ(0.0, t,-t); |
vodnik_edge[1].SetXYZ(0.0, t, t); |
vodnik_edge[2].SetXYZ(0.0,-t, t); |
vodnik_edge[3].SetXYZ(0.0,-t,-t); |
t = a/2.0; |
vodnik_edge[4].SetXYZ(_d, t,-t); |
vodnik_edge[5].SetXYZ(_d, t, t); |
vodnik_edge[6].SetXYZ(_d,-t, t); |
vodnik_edge[7].SetXYZ(_d,-t,-t); |
|
for(int i = 0; i<8; i++) vodnik_edge[i] += center; |
|
// light guide surfaces |
s_side[0] = new CSurface(SURF_REFRA, vodnik_edge, n0, n2, _r); |
s_side[0]->FlipN(); |
|
s_side[1] = new CSurface(SURF_REFRA, vodnik_edge[3], vodnik_edge[2], vodnik_edge[6], vodnik_edge[7], n2, n1, _r); |
s_side[2] = new CSurface(SURF_REFRA, vodnik_edge[2], vodnik_edge[1], vodnik_edge[5], vodnik_edge[6], n2, n1, _r); |
s_side[3] = new CSurface(SURF_REFRA, vodnik_edge[1], vodnik_edge[0], vodnik_edge[4], vodnik_edge[5], n2, n1, _r); |
s_side[4] = new CSurface(SURF_REFRA, vodnik_edge[0], vodnik_edge[3], vodnik_edge[7], vodnik_edge[4], n2, n1, _r); |
|
s_side[5] = new CSurface(SURF_REFRA, &vodnik_edge[4], n2, n3, _r); // n3 - ref ind at the exit, grease, air, epoxy |
s_side[5]->FlipN(); |
|
if(fresnel) for(int i=0; i<6; i++) s_side[i]->SetFresnel(1); |
|
// statistics histograms |
hfate = (TH1F*)gROOT->FindObject("hfate"); if(hfate) delete hfate; |
hfate = new TH1F("hfate", "Ray fate", 8, -3.5, 4.5); |
(hfate->GetXaxis())->SetBinLabel(1, "Back Ref"); |
(hfate->GetXaxis())->SetBinLabel(2, "No Ref"); |
(hfate->GetXaxis())->SetBinLabel(3, "Refrac"); |
(hfate->GetXaxis())->SetBinLabel(4, "LG Miss"); |
(hfate->GetXaxis())->SetBinLabel(5, "Exit"); |
(hfate->GetXaxis())->SetBinLabel(6, "Enter"); |
(hfate->GetXaxis())->SetBinLabel(7, "Rays"); |
(hfate->GetXaxis())->SetBinLabel(8, "Absorb"); |
|
hnodb_all = (TH1F*)gROOT->FindObject("hnodb_all"); if(hnodb_all) delete hnodb_all; |
hnodb_all = new TH1F("hnodb_all", "N reflected", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5); |
|
hnodb_exit = (TH1F*)gROOT->FindObject("hnodb_exit"); if(hnodb_exit) delete hnodb_exit; |
hnodb_exit = new TH1F("hnodb_exit", "N reflected and exit", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5); |
|
int nBins = nch + 1; |
hin = (TH2F*)gROOT->FindObject("hin"); if(hin) delete hin; |
hin = new TH2F("hin", "Guide entrance window", nBins, -b/2.0, +b/2.0, nBins, -b/2.0, +b/2.0); |
|
hout = (TH2F*)gROOT->FindObject("hout"); if(hout) delete hout; |
hout = new TH2F("hout", "Guide exit window", nBins, -a/2.0, +a/2.0, nBins, -a/2.0, +a/2.0); |
|
absorption = 0; |
A = 0; |
// light guide surfaces |
s_side[0] = new CSurface(SURF_REFRA, vodnik_edge, n0, _n2, _r); |
s_side[0]->FlipN(); |
|
s_side[1] = new CSurface(SURF_REFRA, vodnik_edge[3], vodnik_edge[2], |
vodnik_edge[6], vodnik_edge[7], _n2, _n1, _r); |
s_side[2] = new CSurface(SURF_REFRA, vodnik_edge[2], vodnik_edge[1], |
vodnik_edge[5], vodnik_edge[6], _n2, _n1, _r); |
s_side[3] = new CSurface(SURF_REFRA, vodnik_edge[1], vodnik_edge[0], |
vodnik_edge[4], vodnik_edge[5], _n2, _n1, _r); |
s_side[4] = new CSurface(SURF_REFRA, vodnik_edge[0], vodnik_edge[3], |
vodnik_edge[7], vodnik_edge[4], _n2, _n1, _r); |
// n3 - ref ind at the exit, grease, air |
s_side[5] = new CSurface(SURF_REFRA, &vodnik_edge[4], _n2, _n3, _r); |
s_side[5]->FlipN(); |
// exit surface in the case of bad coupling |
noCoupling = new CSurface(SURF_REFRA, &vodnik_edge[4], _n2, 1.0, _r); |
noCoupling->FlipN(); |
// grease = specific pattern area of coupling |
TVector3 activePosition(center); |
activePosition += TVector3(_d, 0, 0); |
TVector3 normal(1,0,0); |
grease = new CPlaneR(activePosition, normal, a/2.0); |
|
if(fresnel) for(int i=0; i<6; i++) s_side[i]->SetFresnel(1); |
|
// statistics histograms |
hfate = (TH1F*)gROOT->FindObject("hfate"); if(hfate) delete hfate; |
hfate = new TH1F("hfate", "Ray fate", 8, -3.5, 4.5); |
(hfate->GetXaxis())->SetBinLabel(1, "Back Ref"); |
(hfate->GetXaxis())->SetBinLabel(2, "No Ref"); |
(hfate->GetXaxis())->SetBinLabel(3, "Refrac"); |
(hfate->GetXaxis())->SetBinLabel(4, "LG Miss"); |
(hfate->GetXaxis())->SetBinLabel(5, "Exit"); |
(hfate->GetXaxis())->SetBinLabel(6, "Enter"); |
(hfate->GetXaxis())->SetBinLabel(7, "Rays"); |
(hfate->GetXaxis())->SetBinLabel(8, "Absorb"); |
|
hnodb_all = (TH1F*)gROOT->FindObject("hnodb_all"); if(hnodb_all) delete hnodb_all; |
hnodb_all = new TH1F("hnodb_all", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5); |
|
hnodb_exit = (TH1F*)gROOT->FindObject("hnodb_exit"); if(hnodb_exit) delete hnodb_exit; |
hnodb_exit = new TH1F("hnodb_exit", "", MAX_REFLECTIONS, -0.5, MAX_REFLECTIONS-0.5); |
|
int nBins = nch + 1; |
hin = (TH2F*)gROOT->FindObject("hin"); if(hin) delete hin; |
hin = new TH2F("hin", ";x [mm]; y[mm]", nBins, -b/2.0, +b/2.0, nBins, -b/2.0, +b/2.0); |
|
hout = (TH2F*)gROOT->FindObject("hout"); if(hout) delete hout; |
hout = new TH2F("hout", ";x [mm];y [mm]", nBins, -a/2.0, +a/2.0, nBins, -a/2.0, +a/2.0); |
} |
//----------------------------------------------------------------------------- |
// Sledi zarku skozi vodnik. Vrne: |
670,143 → 681,152 |
Fate Guide::PropagateRay(CRay in, CRay *out, int *n_points, TVector3 *points) |
{ |
if (dbg) printf("--- GUIDE::PropagateRay ---\n"); |
// ray0 - incident ray |
// ray1 - trans/refl ray |
CRay ray0; |
CRay ray1; |
TVector3 vec0, vec1; |
int inters_i = 0; |
|
ray0 = in; |
int n_odb = 0; |
int last_hit = 0; |
int propagation = 0; |
int result = s_side[0]->PropagateRay(ray0, &ray1, &vec1); |
if( !(result) ) { |
// ce -NI- presecisca z vstopno |
if (dbg) printf(" GUIDE: missed the light guide\n"); |
fate = missed; |
//hfate->Fill(0); |
} else if(result == REFLECTION) { |
if (dbg) printf(" REFLECTED on the entry surface!\n"); |
fate = backreflected; |
//hfate->Fill(-3); |
} else { |
if (dbg) printf(" GUIDE: ray entered\n"); |
points[0] = ray1.GetR(); |
hfate->Fill(enter); // enter |
hin->Fill(vec1.y(), vec1.z()); |
if (dbg) printf(" GUIDE: n_odb = %d\n", n_odb); |
|
while (n_odb++ < MAX_REFLECTIONS) { |
if (dbg) printf(" GUIDE: Boundary test: %d\n",n_odb); |
ray0 = ray1; |
vec0 = vec1; |
propagation = 11; |
for(inters_i=0; inters_i<6; inters_i++) { |
if (dbg) printf(" GUIDE: Test intersection with surface %d \n", inters_i); |
if( inters_i != last_hit) { |
int testBoundary = s_side[inters_i]->TestIntersection(&vec1, ray1); |
if( testBoundary ) { |
if (dbg) printf(" GUIDE: ray intersects with LG surface %d\n",inters_i); |
break; |
} |
} |
} |
points[n_odb] = vec1; |
if(inters_i == 0) { |
fate = backreflected; |
//hfate->Fill(backreflected); |
break; |
} // backreflection |
|
// the passage is possible, test propagation |
propagation = s_side[inters_i]->PropagateRay(ray0, &ray1, &vec1); |
|
if (dbg) printf(" GUIDE: surface = %d, propagation = %d\n", inters_i, propagation); |
|
if(propagation == REFRACTION) { |
fate = refracted; |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} // no total reflection when should be |
if(propagation == ABSORBED) { |
fate = noreflection; |
break; |
} //refraction due to finite reflectivity |
|
if(inters_i == 5) { // successfull exit |
// check on which side the vector is? |
TVector3 ray = ray1.GetN(); |
TVector3 exitNormal = s_side[5]->GetN(); |
//printf("theta(ray) = %lf, theta(normal5) = %lf ", ray.Theta()*DEGREE, exitNormal.Theta()*DEGREE); |
//printf("phi(ray) = %lf, phi(normal5) = %lf\n", ray.Phi()*DEGREE, exitNormal.Phi()*DEGREE); |
if (dbg) printf("ray*n_5 = %lf\n", ray*exitNormal); |
if (ray*exitNormal > 0) { |
if (dbg) printf(" GUIDE: ray is backreflected from exit window.\n"); |
fate = backreflected; |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} |
fate = hitExit; |
hout->Fill(vec1.y(), vec1.z()); |
hnodb_exit->Fill(n_odb-1); |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} |
last_hit = inters_i; |
} |
} |
|
//--- material absorption --- |
if(absorption) { |
double travel = 0.0; |
printf("n_odb = %d\n", n_odb); //dbg |
for(int point = 0; point < n_odb-1; point++) { |
travel += (points[point] - points[point+1]).Mag(); |
printf("travel = %lf\n", travel); //dbg |
} |
double T_abs = TMath::Exp(-travel/A); |
printf("T_abs = %lf\n", T_abs); //dbg |
double p_abs = rand.Uniform(0.0, 1.0); |
printf("p_abs = %lf\n", p_abs); //dbg |
|
if(p_abs > T_abs) fate = absorbed; // absorption |
} |
//--- material absorption --- |
|
hfate->Fill(fate); |
hfate->Fill(rays); |
hnodb_all->Fill(n_odb-2); |
*n_points = n_odb+1; |
*out = ray0; |
return fate; |
|
ray0 = in; |
int n_odb = 0; |
int last_hit = 0; |
int propagation = 0; |
int result = s_side[0]->PropagateRay(ray0, &ray1, &vec1); |
if( !(result) ) { |
// ce -NI- presecisca z vstopno |
if (dbg) printf(" GUIDE: missed the light guide\n"); |
fate = missed; |
//hfate->Fill(0); |
} else if(result == REFLECTION) { |
if (dbg) printf(" REFLECTED on the entry surface!\n"); |
fate = backreflected; |
//hfate->Fill(-3); |
} else { |
if (dbg) printf(" GUIDE: ray entered\n"); |
points[0] = ray1.GetR(); |
hfate->Fill(enter); // enter |
hin->Fill(vec1.y(), vec1.z()); |
if (dbg) printf(" GUIDE: n_odb = %d\n", n_odb); |
|
while (n_odb++ < MAX_REFLECTIONS) { |
if (dbg) printf(" GUIDE: Boundary test: %d\n",n_odb); |
ray0 = ray1; |
vec0 = vec1; |
propagation = 11; |
for(inters_i=0; inters_i<6; inters_i++) { |
if (dbg) printf(" GUIDE: Test intersection with surface %d \n", inters_i); |
if( inters_i != last_hit) { |
int testBoundary = s_side[inters_i]->TestIntersection(&vec1, ray1); |
if( testBoundary ) { |
if (dbg) printf(" GUIDE: ray intersects with LG surface %d\n",inters_i); |
break; |
} |
} |
} |
points[n_odb] = vec1; |
if(inters_i == 0) { |
fate = backreflected; |
//hfate->Fill(backreflected); |
break; |
} // backreflection |
|
// the passage is possible, test propagation |
propagation = s_side[inters_i]->PropagateRay(ray0, &ray1, &vec1); |
|
if (dbg) printf(" GUIDE: surface = %d, propagation = %d\n", inters_i, propagation); |
|
|
if(propagation == ABSORBED) { |
fate = noreflection; |
break; |
} //refraction due to finite reflectivity |
|
if(inters_i == 5) { |
if (_badCoupling) { |
TVector3 hitVector(0,0,0); |
bool hitActive = grease->TestIntersection(&hitVector, ray0); |
if (hitActive and dbg) printf(" GUIDE: hit grease\n"); |
if (!hitActive) propagation = noCoupling->PropagateRay(ray0, &ray1, &vec1); |
} |
// check on which side the vector is? |
TVector3 ray = ray1.GetN(); |
TVector3 exitNormal = s_side[5]->GetN(); |
if (dbg) printf("ray*n_5 = %lf\n", ray*exitNormal); |
if (ray*exitNormal > 0) { |
if (dbg) printf(" GUIDE: ray is backreflected from exit window.\n"); |
fate = backreflected; |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} |
fate = hitExit; |
hout->Fill(vec1.y(), vec1.z()); |
hnodb_exit->Fill(n_odb-1); |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} |
|
if(propagation == REFRACTION) { |
fate = refracted; |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} // no total reflection when should be |
|
last_hit = inters_i; |
} |
} |
|
//--- material absorption --- |
if(_absorption) { |
double travel = 0.0; |
if (dbg) printf("n_odb = %d\n", n_odb); |
for(int point = 0; point < n_odb-1; point++) { |
travel += (points[point] - points[point+1]).Mag(); |
if (dbg) printf("travel = %lf\n", travel); |
} |
double T_abs = TMath::Exp(-travel/_A); |
if(dbg)printf("T_abs = %lf\n", T_abs); |
double p_abs = rand.Uniform(0.0, 1.0); |
if(dbg)printf("p_abs = %lf\n", p_abs); |
|
if(p_abs > T_abs) fate = absorbed; // absorption |
} |
//--- material absorption --- |
|
hfate->Fill(fate); |
hfate->Fill(rays); |
hnodb_all->Fill(n_odb-2); |
*n_points = n_odb+1; |
*out = ray0; |
return fate; |
} |
//----------------------------------------------------------------------------- |
void Guide::GetVFate(int *out) |
{ |
for(int i=0;i<7;i++) out[i] = (int)hfate->GetBinContent(i+1); |
for(int i=0;i<7;i++) out[i] = (int)hfate->GetBinContent(i+1); |
} |
//----------------------------------------------------------------------------- |
void Guide::Draw(int color, int width) |
{ |
for(int i = 0; i<6; i++) s_side[i]->Draw(color, width); |
for(int i = 0; i<6; i++) s_side[i]->Draw(color, width); |
} |
//----------------------------------------------------------------------------- |
void Guide::DrawSkel(int color, int width) |
{ |
TPolyLine3D *line3d = new TPolyLine3D(2); |
line3d->SetLineWidth(width); line3d->SetLineColor(color); |
TPolyLine3D *line3d = new TPolyLine3D(2); |
line3d->SetLineWidth(width); line3d->SetLineColor(color); |
|
for(int i=0; i<4; i++) { |
line3d->SetPoint(0, vodnik_edge[i+0].x(), vodnik_edge[i+0].y(), vodnik_edge[i+0].z()); |
line3d->SetPoint(1, vodnik_edge[i+4].x(), vodnik_edge[i+4].y(), vodnik_edge[i+4].z()); |
line3d->DrawClone(); |
} |
for(int i=0; i<4; i++) { |
line3d->SetPoint(0, vodnik_edge[i+0].x(), vodnik_edge[i+0].y(), vodnik_edge[i+0].z()); |
line3d->SetPoint(1, vodnik_edge[i+4].x(), vodnik_edge[i+4].y(), vodnik_edge[i+4].z()); |
line3d->DrawClone(); |
} |
} |
//================================================================================= |
|
813,60 → 833,60 |
//================================================================================= |
int CPlaneR::TestIntersection(TVector3 *vec, CRay ray) |
{ |
double num, den; //stevec, imenovalec |
double t; |
TVector3 tmp; |
double num, den; //stevec, imenovalec |
double t; |
TVector3 tmp; |
|
if(dbg) printf("---> CPlaneR::TestIntersection <---\n"); |
if(dbg) {printf("c = "); printv(center); printf(" | n = "); printv(n); printf("\n");} |
|
double D = - n*center; |
num = n*ray.GetR() + D; |
den = n*ray.GetN(); |
|
if(dbg) printf("D = %.4lf | num = %.4lf | den = %.4lf\n", D, num, den); |
if(dbg) printf("---> CPlaneR::TestIntersection <---\n"); |
if(dbg) {printf("c = "); printv(center); printf(" | n = "); printv(n); printf("\n");} |
|
if(TMath::Abs(den) < MARGIN) { |
if(TMath::Abs(num) < MARGIN) |
return 0; |
else |
return 0; |
} |
|
t = num / den; |
|
if(dbg) printf("t = %.4lf | ", t); |
|
tmp = ray.GetR(); |
tmp -= t*ray.GetN(); |
*vec = tmp; |
|
if(dbg) {printv(tmp); printf(" | Rv = %.4lf <> R = %.4lf\n", ((tmp - center).Mag()), _r);} |
|
|
if( ((tmp - center).Mag()) < _r ) |
return 1; |
else |
return 0; |
double D = - n*center; |
num = n*ray.GetR() + D; |
den = n*ray.GetN(); |
|
if(dbg) printf("D = %.4lf | num = %.4lf | den = %.4lf\n", D, num, den); |
|
if(TMath::Abs(den) < MARGIN) { |
if(TMath::Abs(num) < MARGIN) |
return 0; |
else |
return 0; |
} |
|
t = num / den; |
|
if(dbg) printf("t = %.4lf | ", t); |
|
tmp = ray.GetR(); |
tmp -= t*ray.GetN(); |
*vec = tmp; |
|
if(dbg) {printv(tmp); printf(" | Rv = %.4lf <> R = %.4lf\n", ((tmp - center).Mag()), _r);} |
|
|
if( ((tmp - center).Mag()) < _r ) |
return 1; |
else |
return 0; |
} |
//----------------------------------------------------------------------------- |
void CPlaneR::Draw(int color, int width) |
{ |
const int NN = 32; |
double phi, x, y; |
|
TPolyLine3D *arc; |
arc = new TPolyLine3D(NN+1); |
arc->SetLineWidth(width); |
arc->SetLineColor(color); |
const int NN = 32; |
double phi, x, y; |
|
for(int i=0; i<=NN; i++) { |
phi = i*2.0*TMath::Pi()/NN; |
x = _r*TMath::Cos(phi); |
y = _r*TMath::Sin(phi); |
arc->SetPoint(i, center.x(), x, y); |
} |
arc->Draw(); |
TPolyLine3D *arc; |
arc = new TPolyLine3D(NN+1); |
arc->SetLineWidth(width); |
arc->SetLineColor(color); |
|
for(int i=0; i<=NN; i++) { |
phi = i*2.0*TMath::Pi()/NN; |
x = _r*TMath::Cos(phi); |
y = _r*TMath::Sin(phi); |
arc->SetPoint(i, center.x(), x, y); |
} |
arc->Draw(); |
} |
//================================================================================= |
|
873,109 → 893,104 |
|
//================================================================================= |
CDetector::CDetector(TVector3 center0, DetectorParameters& parameters) : |
center(center0), |
glass_on(parameters.getGlassOn()), |
glass_d(parameters.getGlassD()), |
//x_gap(parameters.getGap().X()), |
//y_gap(parameters.getGap().Y()), |
//z_gap(parameters.getGap().Z()), |
//glass(new CSurface), |
//glass_circle(new CPlaneR), |
//active(new CPlane4), |
col_in(2), |
col_lg(8), |
col_out(4), |
col_rgla(6), |
col_LG(1), |
col_glass(4), |
col_active(7), |
guide_on(parameters.getGuideOn()), |
//window_R( parameters.getB() ), |
//window_d(0), |
guide(new Guide(center0, parameters)), |
plate(new Plate(parameters)), |
_plateWidth(parameters.getPlateWidth()), |
_plateOn(parameters.getPlateOn()), |
offsetY(parameters.getOffsetY()), |
offsetZ(parameters.getOffsetZ()) |
{ |
// }; |
|
//----------------------------------------------------------------------------- |
//void CDetector::Init() |
//{ |
center(center0), |
glass_on(parameters.getGlassOn()), |
glass_d(parameters.getGlassD()), |
col_in(2), |
col_lg(8), |
col_out(4), |
col_rgla(6), |
col_LG(1), |
col_glass(4), |
col_active(7), |
guide_on(parameters.getGuideOn()), |
guide(new Guide(center0, parameters)), |
plate(new Plate(parameters)), |
_plateWidth(parameters.getPlateWidth()), |
_plateOn(parameters.getPlateOn()), |
offsetY(parameters.getOffsetY()), |
offsetZ(parameters.getOffsetZ()) |
{ |
// }; |
|
//----------------------------------------------------------------------------- |
//void CDetector::Init() |
//{ |
double d = parameters.getD(); |
double x_offset; |
if(guide_on) x_offset = center.x(); |
else x_offset = center.x() - d; |
|
//guide = new CVodnik(center, SiPM, M, d, type_in, type_side, type_out, n1, n2, n3, reflectivity, fresnel, absorption, A); |
|
double b = parameters.getB(); |
//double n1 = parameters.getN1(); |
//double n2 = parameters.getN2(); |
double n3 = parameters.getN3(); |
double reflectivity = c_reflectivity; |
double x_gap = parameters.getGap().X(); |
double y_gap = parameters.getGap().Y(); |
double z_gap = parameters.getGap().Z(); |
|
// additional glass between at top of SiPM |
// example: epoxy n=1.60 |
double n4 = 1.57; |
TVector3 plane_v[4]; |
int nBins = nch + 1; |
double p_size = b/2.0; |
plane_v[0].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap + p_size); |
plane_v[2].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap - p_size); |
glass = new CSurface(SURF_REFRA, plane_v, n3, n4, reflectivity); |
glass->FlipN(); |
|
// additional circular glass between LG and SiPM |
glass_circle = new CPlaneR(TVector3(x_offset+d+glass_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), b); |
|
hglass = (TH2F*)gROOT->FindObject("hglass"); if(hglass) delete hglass; |
hglass = new TH2F("hglass", "Hits glass", |
nBins, y_gap - p_size, y_gap + p_size, |
nBins, z_gap - p_size, z_gap + p_size); |
|
// SiPM active surface |
p_size = parameters.getActive()/2.0; |
//cout<<"SiPM active length "<<detectorActive<<endl; |
//p_size = 1.0/2.0; |
plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size); |
plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size); |
active = new CPlane4(plane_v); |
|
hactive = (TH2F*)gROOT->FindObject("hactive"); if(hactive) delete hactive; |
//hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size); |
hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ); |
|
p_size = b/2.0; |
//p_size = 2.5; |
//p_size = M*0.6; |
hlaser = (TH2F*)gROOT->FindObject("hlaser"); if(hlaser) delete hlaser; |
hlaser = new TH2F("hlaser", ";x [mm]; y [mm]", nBins, -p_size+offsetY, p_size+offsetY, nBins, -p_size+offsetZ, p_size+offsetZ); |
|
// collection surface in SiPM plane |
p_size = 1.4*b/2.0; |
plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size); |
plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size); |
detector = new CPlane4(plane_v); |
|
hdetector = (TH2F*)gROOT->FindObject("hdetector"); if(hdetector) delete hdetector; |
//hdetector = new TH2F("hdetector", "Hits detector plane", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size); |
hdetector = new TH2F("hdetector", ";x [mm]; y [mm]", nBins, y_gap-p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ); |
|
/* |
double x_offset; |
if(guide_on) x_offset = center.x(); |
else x_offset = center.x() - d; |
|
double b = parameters.getB(); |
//double n1 = parameters.getN1(); |
//double n2 = parameters.getN2(); |
double n3 = parameters.getN3(); |
double reflectivity = c_reflectivity; |
double x_gap = parameters.getGap().X(); |
double y_gap = parameters.getGap().Y(); |
double z_gap = parameters.getGap().Z(); |
|
// additional glass between at top of SiPM |
// example: epoxy n=1.60 |
double n4 = 1.57; |
TVector3 plane_v[4]; |
int nBins = nch + 1; |
double p_size = b/2.0; |
plane_v[0].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+glass_d, y_gap + p_size, z_gap + p_size); |
plane_v[2].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+glass_d, y_gap - p_size, z_gap - p_size); |
glass = new CSurface(SURF_REFRA, plane_v, n3, n4, reflectivity); |
glass->FlipN(); |
|
// additional circular glass between LG and SiPM |
glass_circle = new CPlaneR(TVector3(x_offset+d+glass_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), b); |
|
hglass = (TH2F*)gROOT->FindObject("hglass"); if(hglass) delete hglass; |
hglass = new TH2F("hglass", "", |
nBins, y_gap - p_size, y_gap + p_size, |
nBins, z_gap - p_size, z_gap + p_size); |
|
// SiPM active surface |
p_size = parameters.getActive()/2.0; |
if (dbg) cout<<"SiPM active length "<<parameters.getActive()<<endl; |
|
plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size); |
plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size); |
active = new CPlane4(plane_v); |
//active surface in case of bad coupling is circle d=a |
TVector3 activePosition(center); |
activePosition += TVector3(d + x_gap, 0, 0); |
TVector3 normal(1,0,0); |
grease = new CPlaneR(activePosition, normal, 1.0*p_size); |
|
hactive = (TH2F*)gROOT->FindObject("hactive"); if(hactive) delete hactive; |
//hactive = new TH2F("hactive", "Active area hits", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size); |
hactive = new TH2F("hactive", ";x [mm];y [mm]", nBins, y_gap - p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ); |
|
p_size = b/2.0; |
//p_size = 2.5; |
//p_size = M*0.6; |
hlaser = (TH2F*)gROOT->FindObject("hlaser"); if(hlaser) delete hlaser; |
hlaser = new TH2F("hlaser", ";x [mm]; y [mm]", nBins, -p_size+offsetY, p_size+offsetY, nBins, -p_size+offsetZ, p_size+offsetZ); |
|
// collection surface in SiPM plane |
p_size = 1.4*b/2.0; |
plane_v[0].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+x_gap, y_gap + p_size, z_gap + p_size); |
plane_v[2].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+x_gap, y_gap - p_size, z_gap - p_size); |
detector = new CPlane4(plane_v); |
|
hdetector = (TH2F*)gROOT->FindObject("hdetector"); if(hdetector) delete hdetector; |
//hdetector = new TH2F("hdetector", "Hits detector plane", nBins, y_gap - p_size, y_gap + p_size, nBins, z_gap - p_size, z_gap + p_size); |
hdetector = new TH2F("hdetector", ";x [mm]; y [mm]", nBins, y_gap-p_size + offsetY, y_gap + p_size + offsetY, nBins, z_gap - p_size + offsetZ, z_gap + p_size + offsetZ); |
|
/* |
window_circle = new CPlaneR(TVector3(x_offset+d+window_d, y_gap, z_gap), TVector3(-1.0, 0.0, 0.0), window_R); |
|
|
p_size = M*a; |
plane_v[0].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap - p_size); |
plane_v[1].SetXYZ(x_offset+d+window_d, y_gap + p_size, z_gap + p_size); |
982,13 → 997,13 |
plane_v[2].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap + p_size); |
plane_v[3].SetXYZ(x_offset+d+window_d, y_gap - p_size, z_gap - p_size); |
window = new CSurface(SURF_REFRA, plane_v, n1, n2, reflectivity); window->FlipN(); |
|
|
hwindow = (TH2F*)gROOT->FindObject("hwindow"); if(hwindow) delete hwindow; |
hwindow = new TH2F("hwindow", "Hits Window", nch, y_gap - window_R, y_gap + window_R, nch, z_gap - window_R, z_gap + window_R); |
*/ |
p_size = b/2.0; |
histoPlate = (TH2F*)gROOT->FindObject("histoPlate"); if(histoPlate) delete histoPlate; |
histoPlate = new TH2F("histoPlate", "Hits on glass plate", nBins, -p_size, +p_size, nBins, -p_size, +p_size); |
*/ |
p_size = b/2.0; |
histoPlate = (TH2F*)gROOT->FindObject("histoPlate"); if(histoPlate) delete histoPlate; |
histoPlate = new TH2F("histoPlate", "Hits on glass plate", nBins, -p_size, +p_size, nBins, -p_size, +p_size); |
} |
|
//----------------------------------------------------------------------------- |
995,7 → 1010,6 |
// vrne 1 ce je zadel aktvino povrsino |
// vrne <1 ce jo zgresi |
int CDetector::Propagate(CRay in, CRay *out, int draw) |
|
// Sledi zarku skozi vodnik. Vrne: |
// 0, ce zgresi vstopno ploskev MISSED |
// 1, ce zadane izstopno ploskev HIT |
1006,195 → 1020,195 |
// +4, ce se absorbira v materialu ABSORBED |
{ |
if (dbg) printf("--- Detector::Propagate ---\n"); |
//CRay *ray0 = new CRay; ray0->Set(in.GetR(), in.GetN()); ray0->SetColor(col_in); |
CRay *rayin = new CRay(in); |
rayin->SetColor(col_in); |
CRay *rayout = new CRay(in); |
rayout->SetColor(col_in); |
//CRay *ray0 = new CRay; ray0->Set(in.GetR(), in.GetN()); ray0->SetColor(col_in); |
CRay *rayin = new CRay(in); |
rayin->SetColor(col_in); |
CRay *rayout = new CRay(in); |
rayout->SetColor(col_in); |
|
const int max_n_points = guide->GetMAXODB() + 2; |
TVector3 pointsPlate[max_n_points]; |
//TVector3 intersection; |
Fate fatePlate; |
int nPointsPlate; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(4); |
|
// Draw the plate and propagate the ray through |
// check if the ray should be reflected?? |
|
if(_plateOn) { |
|
fatePlate = plate->propagateRay(*rayin, rayout, &nPointsPlate, pointsPlate); |
if(draw) rayin->DrawS(center.x()- _plateWidth, -10.0); |
if(draw) { |
if(fatePlate == missed) { |
rayout->SetColor(col_in); |
rayout->DrawS(center.x() - _plateWidth, -10.0); |
} |
else if(fatePlate == backreflected){ |
if (dbg) printf("Backreflected at plate!\n"); |
} |
else { |
int p_i; |
for(p_i = 0; p_i < nPointsPlate-1; p_i++) { |
line3d->SetPoint(0, pointsPlate[p_i].x(), pointsPlate[p_i].y(), pointsPlate[p_i].z()); |
line3d->SetPoint(1, pointsPlate[p_i+1].x(), pointsPlate[p_i+1].y(), pointsPlate[p_i+1].z()); |
line3d->DrawClone(); |
} |
rayout->DrawS(pointsPlate[p_i].x(), -0.1); |
if(fatePlate == noreflection) { // lost on plate side |
rayout->SetColor(col_out); |
rayout->DrawS(pointsPlate[p_i].x(), 10.0); |
} |
} |
} |
|
if(! (fatePlate == hitExit or fatePlate == refracted) ) { |
guide->GetHFate()->Fill(rays); |
if (dbg)printf("CDetector::propagate Simulated ray missed the entry surface!\n"); |
if (fatePlate == backreflected) |
guide->GetHFate()->Fill(fatePlate); // reflected back |
else |
guide->GetHFate()->Fill(noreflection); //lost on plate side |
return fatePlate; |
} |
|
//Ray hits light guide |
histoPlate->Fill(pointsPlate[0].y(), pointsPlate[0].z()); // entry point |
const int max_n_points = guide->GetMAXODB() + 2; |
TVector3 pointsPlate[max_n_points]; |
//TVector3 intersection; |
Fate fatePlate; |
int nPointsPlate; |
TPolyLine3D *line3d = new TPolyLine3D(2); |
line3d->SetLineWidth(1); |
line3d->SetLineColor(4); |
|
} |
else { |
//rayout = rayin; |
if(draw) rayout->DrawS(center.x(), -10.0); |
} |
|
// If the ray is not reflected in the plate |
// Draw the light guide and propagate the ray through |
|
//const int max_n_points = guide->GetMAXODB() + 2; |
TVector3 points[max_n_points]; |
TVector3 presecisce; |
// Draw the plate and propagate the ray through |
// check if the ray should be reflected?? |
|
int n_points; |
int fate_glass; |
CRay *ray0 = new CRay(*rayout); |
// delete rayout; -> creates dangling reference when tries to delete ray0! |
//delete rayin; -> delete rayout! |
CRay *ray1 = new CRay; |
|
fate = guide->PropagateRay(*ray0, ray1, &n_points, points); |
if (dbg) { |
if (fate == backreflected) printf("DETECTOR::backreflected\n"); |
} |
|
line3d->SetLineColor(col_lg); |
int p_i; |
if(guide_on) { |
if(draw) { |
if(fate == missed) { |
if (dbg) printf("Detector: fate=missed\n"); |
TVector3 r = ray1->GetR(); |
TVector3 n = ray1->GetN(); |
ray1->Set(r,n); |
ray1->DrawS(center.x(), 10.0); |
} else { |
for(p_i = 0; p_i < n_points-1; p_i++) { |
line3d->SetPoint(0, points[p_i].x(), points[p_i].y(), points[p_i].z()); |
line3d->SetPoint(1, points[p_i+1].x(), points[p_i+1].y(), points[p_i+1].z()); |
line3d->DrawClone(); |
} |
if(fate != noreflection) { |
if (dbg) printf("Detector: fate != noreflection, fate = %d\n", (int)fate); |
if(glass_on) {/*if(fate == 1)*/ ray1->Draw(points[p_i].x(), center.x() + guide->getD() + glass_d);} |
else { |
ray1->SetColor(col_out); |
ray1->DrawS(points[p_i].x(), 10.0); |
} |
} |
} |
} |
|
|
if(! (fate == hitExit or fate == refracted) ) { |
if (dbg) printf("Detector: fate != hit, refracted\n"); |
*out = *ray1; |
delete ray0; |
delete ray1; |
delete rayout; |
delete rayin; |
return fate; |
} |
} else { |
if (dbg) printf("Detector: fate = hit or refracted"); |
ray1 = ray0; |
if(draw) { |
//double epoxy = parameters->getGlassD(); |
if(glass_on) ray1->Draw(center.x(), center.x() + glass_d); |
else ray1->DrawS(center.x(), 10.0); |
} |
} |
|
fate = missed; // zgresil aktivno povrsino |
if(glass_on) { |
*ray0 = *ray1; |
ray1->SetColor(col_rgla); |
fate_glass = glass->PropagateRay(*ray0, ray1, &presecisce); |
if(fate_glass == REFRACTION) { |
hglass->Fill(presecisce.y(), presecisce.z()); |
if(draw) ray1->DrawS(presecisce.x(), 10.0); |
//if(active->TestIntersection(&presecisce, *ray1)) { |
//fate = hitExit; |
//hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
//hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ); |
//} |
//if(detector->TestIntersection(&presecisce, *ray1)) |
//hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
//} else if(fate_glass == REFLECTION) { |
else |
if(draw) ray1->DrawS(presecisce.x(), 10.0); |
} |
} |
if(_plateOn) { |
|
// Main test: ray and SiPM surface |
if(active->TestIntersection(&presecisce, *ray1)) { |
fate = hitExit; |
hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ); |
} |
// If it is on the same plane as SiPM |
if(detector->TestIntersection(&presecisce, *ray1)) |
hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
//} |
//} else { |
//if(draw) ray1->Draw(presecisce.x(), center.x()+d+window_d); |
//} |
|
*out = *ray1; |
delete ray0; |
delete ray1; |
delete rayout; |
delete rayin; |
return fate; |
fatePlate = plate->propagateRay(*rayin, rayout, &nPointsPlate, pointsPlate); |
if(draw) rayin->DrawS(center.x()- _plateWidth, -10.0); |
if(draw) { |
if(fatePlate == missed) { |
rayout->SetColor(col_in); |
rayout->DrawS(center.x() - _plateWidth, -10.0); |
} |
else if(fatePlate == backreflected){ |
if (dbg) printf("Backreflected at plate!\n"); |
} |
else { |
int p_i; |
for(p_i = 0; p_i < nPointsPlate-1; p_i++) { |
line3d->SetPoint(0, pointsPlate[p_i].x(), pointsPlate[p_i].y(), pointsPlate[p_i].z()); |
line3d->SetPoint(1, pointsPlate[p_i+1].x(), pointsPlate[p_i+1].y(), pointsPlate[p_i+1].z()); |
line3d->DrawClone(); |
} |
rayout->DrawS(pointsPlate[p_i].x(), -0.1); |
if(fatePlate == noreflection) { // lost on plate side |
rayout->SetColor(col_out); |
rayout->DrawS(pointsPlate[p_i].x(), 10.0); |
} |
} |
} |
|
if(! (fatePlate == hitExit or fatePlate == refracted) ) { |
guide->GetHFate()->Fill(rays); |
if (dbg)printf("CDetector::propagate Simulated ray missed the entry surface!\n"); |
if (fatePlate == backreflected) |
guide->GetHFate()->Fill(fatePlate); // reflected back |
else |
guide->GetHFate()->Fill(noreflection); //lost on plate side |
return fatePlate; |
} |
|
//Ray hits light guide |
histoPlate->Fill(pointsPlate[0].y(), pointsPlate[0].z()); // entry point |
|
} |
else { |
//rayout = rayin; |
if(draw) rayout->DrawS(center.x(), -10.0); |
} |
|
// If the ray is not reflected in the plate |
// Draw the light guide and propagate the ray through |
|
//const int max_n_points = guide->GetMAXODB() + 2; |
TVector3 points[max_n_points]; |
TVector3 presecisce; |
|
int n_points; |
int fate_glass; |
CRay *ray0 = new CRay(*rayout); |
// delete rayout; -> creates dangling reference when tries to delete ray0! |
//delete rayin; -> delete rayout! |
CRay *ray1 = new CRay; |
|
fate = guide->PropagateRay(*ray0, ray1, &n_points, points); |
if (dbg) { |
if (fate == backreflected) printf("DETECTOR::backreflected\n"); |
} |
|
line3d->SetLineColor(col_lg); |
int p_i; |
if(guide_on) { |
if(draw) { |
if(fate == missed) { |
if (dbg) printf("Detector: fate=missed\n"); |
TVector3 r = ray1->GetR(); |
TVector3 n = ray1->GetN(); |
ray1->Set(r,n); |
ray1->DrawS(center.x(), 10.0); |
} else { |
for(p_i = 0; p_i < n_points-1; p_i++) { |
line3d->SetPoint(0, points[p_i].x(), points[p_i].y(), points[p_i].z()); |
line3d->SetPoint(1, points[p_i+1].x(), points[p_i+1].y(), points[p_i+1].z()); |
line3d->DrawClone(); |
} |
if(fate != noreflection) { |
if (dbg) printf("Detector: fate != noreflection, fate = %d\n", (int)fate); |
if(glass_on) {/*if(fate == 1)*/ ray1->Draw(points[p_i].x(), center.x() + guide->getD() + glass_d);} |
else { |
ray1->SetColor(col_out); |
ray1->DrawS(points[p_i].x(), 10.0); |
} |
} |
} |
} |
|
|
if(! (fate == hitExit or fate == refracted) ) { |
if (dbg) printf("Detector: fate != hit, refracted\n"); |
*out = *ray1; |
delete ray0; |
delete ray1; |
delete rayout; |
delete rayin; |
return fate; |
} |
} else { |
if (dbg) printf("Detector: fate = hit or refracted"); |
ray1 = ray0; |
if(draw) { |
//double epoxy = parameters->getGlassD(); |
if(glass_on) ray1->Draw(center.x(), center.x() + glass_d); |
else ray1->DrawS(center.x(), 10.0); |
} |
} |
|
fate = missed; // zgresil aktivno povrsino |
if(glass_on) { |
*ray0 = *ray1; |
ray1->SetColor(col_rgla); |
fate_glass = glass->PropagateRay(*ray0, ray1, &presecisce); |
if(fate_glass == REFRACTION) { |
hglass->Fill(presecisce.y(), presecisce.z()); |
if(draw) ray1->DrawS(presecisce.x(), 10.0); |
//if(active->TestIntersection(&presecisce, *ray1)) { |
//fate = hitExit; |
//hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
//hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ); |
//} |
//if(detector->TestIntersection(&presecisce, *ray1)) |
//hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
//} else if(fate_glass == REFLECTION) { |
else |
if(draw) ray1->DrawS(presecisce.x(), 10.0); |
} |
} |
|
// Main test: ray and SiPM surface |
if(active->TestIntersection(&presecisce, *ray1)) { |
fate = hitExit; |
hactive->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
hlaser->Fill((in.GetR()).y() + offsetY, (in.GetR()).z() + offsetZ); |
} |
// If it is on the same plane as SiPM |
if(detector->TestIntersection(&presecisce, *ray1)) |
hdetector->Fill(offsetY + presecisce.y(), offsetZ + presecisce.z()); |
//} |
//} else { |
//if(draw) ray1->Draw(presecisce.x(), center.x()+d+window_d); |
//} |
|
*out = *ray1; |
delete ray0; |
delete ray1; |
delete rayout; |
delete rayin; |
return fate; |
} |
//----------------------------------------------------------------------------- |
void CDetector::Draw(int width) |
{ |
if(guide_on) { |
if( TMath::Abs(guide->getN1()-guide->getN2()) < MARGIN ) { |
if(_plateOn) plate->drawSkel(col_LG, width); |
guide->DrawSkel(col_LG, width); |
} |
else { |
if(_plateOn) plate->draw(4, width); |
guide->Draw(col_LG, width); |
} |
} |
|
if(glass_on) glass_circle->Draw(col_glass, width); |
//window_circle->Draw(col_glass, width); |
active->Draw(col_active, width); |
if(guide_on) { |
if( TMath::Abs(guide->getN1()-guide->getN2()) < MARGIN ) { |
if(_plateOn) plate->drawSkel(col_LG, width); |
guide->DrawSkel(col_LG, width); |
} |
else { |
if(_plateOn) plate->draw(4, width); |
guide->Draw(col_LG, width); |
} |
} |
|
if(glass_on) glass_circle->Draw(col_glass, width); |
//window_circle->Draw(col_glass, width); |
active->Draw(col_active, width); |
} |
//================================================================================= |
|
1203,52 → 1217,52 |
TVector3 center = CENTER; |
const double b = parameters.getB(); |
const double n1 = parameters.getN1(); |
const double n2 = parameters.getN2(); |
const double t = b/2.; |
const double plateWidth = parameters.getPlateWidth(); |
center.SetX( CENTER.X() - plateWidth ); |
|
plate_edge[0].SetXYZ(0.0, t,-t); |
plate_edge[1].SetXYZ(0.0, t, t); |
plate_edge[2].SetXYZ(0.0,-t, t); |
plate_edge[3].SetXYZ(0.0,-t,-t); |
plate_edge[4].SetXYZ(plateWidth, t,-t); |
plate_edge[5].SetXYZ(plateWidth, t, t); |
plate_edge[6].SetXYZ(plateWidth,-t, t); |
plate_edge[7].SetXYZ(plateWidth,-t,-t); |
|
for(int i = 0; i<8; i++) plate_edge[i] += center; |
|
sides[0] = new CSurface(SURF_REFRA, plate_edge, n1, n2, c_reflectivity); |
sides[0]->FlipN(); |
|
sides[1] = new CSurface(SURF_REFRA, plate_edge[3], plate_edge[2], plate_edge[6], plate_edge[7], n2, n2, c_reflectivity); |
sides[2] = new CSurface(SURF_REFRA, plate_edge[2], plate_edge[1], plate_edge[5], plate_edge[6], n2, n2, c_reflectivity); |
sides[3] = new CSurface(SURF_REFRA, plate_edge[1], plate_edge[0], plate_edge[4], plate_edge[5], n2, n2, c_reflectivity); |
sides[4] = new CSurface(SURF_REFRA, plate_edge[0], plate_edge[3], plate_edge[7], plate_edge[4], n2, n2, c_reflectivity); |
|
sides[5] = new CSurface(SURF_REFRA, &plate_edge[4], n2, n2, c_reflectivity); |
sides[5]->FlipN(); |
|
for(int i=0; i<6; i++) sides[i]->SetFresnel(1); |
const double n2 = parameters.getN2(); |
const double t = b/2.; |
const double plateWidth = parameters.getPlateWidth(); |
center.SetX( CENTER.X() - plateWidth ); |
|
plate_edge[0].SetXYZ(0.0, t,-t); |
plate_edge[1].SetXYZ(0.0, t, t); |
plate_edge[2].SetXYZ(0.0,-t, t); |
plate_edge[3].SetXYZ(0.0,-t,-t); |
plate_edge[4].SetXYZ(plateWidth, t,-t); |
plate_edge[5].SetXYZ(plateWidth, t, t); |
plate_edge[6].SetXYZ(plateWidth,-t, t); |
plate_edge[7].SetXYZ(plateWidth,-t,-t); |
|
for(int i = 0; i<8; i++) plate_edge[i] += center; |
|
sides[0] = new CSurface(SURF_REFRA, plate_edge, n1, n2, c_reflectivity); |
sides[0]->FlipN(); |
|
sides[1] = new CSurface(SURF_REFRA, plate_edge[3], plate_edge[2], plate_edge[6], plate_edge[7], n2, n2, c_reflectivity); |
sides[2] = new CSurface(SURF_REFRA, plate_edge[2], plate_edge[1], plate_edge[5], plate_edge[6], n2, n2, c_reflectivity); |
sides[3] = new CSurface(SURF_REFRA, plate_edge[1], plate_edge[0], plate_edge[4], plate_edge[5], n2, n2, c_reflectivity); |
sides[4] = new CSurface(SURF_REFRA, plate_edge[0], plate_edge[3], plate_edge[7], plate_edge[4], n2, n2, c_reflectivity); |
|
sides[5] = new CSurface(SURF_REFRA, &plate_edge[4], n2, n2, c_reflectivity); |
sides[5]->FlipN(); |
|
for(int i=0; i<6; i++) sides[i]->SetFresnel(1); |
} |
|
void Plate::draw(int color, int width) |
{ |
for(int i = 0; i<6; i++) sides[i]->Draw(color, width); |
for(int i = 0; i<6; i++) sides[i]->Draw(color, width); |
} |
|
void Plate::drawSkel(int color, int width) |
{ |
TPolyLine3D line3d(2); |
line3d.SetLineWidth(width); |
line3d.SetLineColor(color); |
TPolyLine3D line3d(2); |
line3d.SetLineWidth(width); |
line3d.SetLineColor(color); |
|
for(int i=0; i<4; i++) { |
line3d.SetPoint(0, plate_edge[i+0].x(), plate_edge[i+0].y(), plate_edge[i+0].z()); |
line3d.SetPoint(1, plate_edge[i+4].x(), plate_edge[i+4].y(), plate_edge[i+4].z()); |
line3d.DrawClone(); |
} |
for(int i=0; i<4; i++) { |
line3d.SetPoint(0, plate_edge[i+0].x(), plate_edge[i+0].y(), plate_edge[i+0].z()); |
line3d.SetPoint(1, plate_edge[i+4].x(), plate_edge[i+4].y(), plate_edge[i+4].z()); |
line3d.DrawClone(); |
} |
} |
|
Fate Plate::propagateRay(CRay in, CRay *out, int *n_points, TVector3 *points) |
1258,66 → 1272,66 |
TVector3 vec0, vec1; |
Fate fate = enter; |
int inters_i = 0; |
|
ray0 = in; |
int n_odb = 0; |
int last_hit = 0; |
int propagation = 0; |
|
int result = sides[0]->PropagateRay(ray0, &ray1, &vec1); |
if( !result ) { |
// ce -NI- presecisca z vstopno |
fate = missed; |
} else if(result == REFLECTION) { |
if (dbg) printf("PLATE: reflected\n"); |
fate = backreflected; |
} else { |
points[0] = ray1.GetR(); |
//hfate->Fill(enter); |
//hin->Fill(vec1.y(), vec1.z()); |
while (n_odb++ < MAX_REFLECTIONS) { |
ray0 = ray1; |
vec0 = vec1; |
propagation = 11; |
for(inters_i=0; inters_i<6; inters_i++) { |
if( inters_i != last_hit) { |
if( sides[inters_i]->TestIntersection(&vec1, ray1) ) break; |
} |
} |
points[n_odb] = vec1; |
if(inters_i == 0) { |
fate = backreflected; |
break;} // backreflection |
|
propagation = sides[inters_i]->PropagateRay(ray0, &ray1, &vec1); |
if(inters_i == 5) { // successfull exit |
fate = hitExit; |
//hout->Fill(vec1.y(), vec1.z()); |
//hnodb_exit->Fill(n_odb-1); |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} |
if(propagation == 1) { |
fate = noreflection; //at side |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break;} // no total reflection when should be |
|
if(propagation == -2) { |
fate = noreflection; |
break; |
} // absorption due to finite reflectivity |
|
last_hit = inters_i; |
} |
} |
|
*n_points = n_odb+1; |
*out = ray0; |
return fate; |
|
ray0 = in; |
int n_odb = 0; |
int last_hit = 0; |
int propagation = 0; |
|
int result = sides[0]->PropagateRay(ray0, &ray1, &vec1); |
if( !result ) { |
// ce -NI- presecisca z vstopno |
fate = missed; |
} else if(result == REFLECTION) { |
if (dbg) printf("PLATE: reflected\n"); |
fate = backreflected; |
} else { |
points[0] = ray1.GetR(); |
//hfate->Fill(enter); |
//hin->Fill(vec1.y(), vec1.z()); |
while (n_odb++ < MAX_REFLECTIONS) { |
ray0 = ray1; |
vec0 = vec1; |
propagation = 11; |
for(inters_i=0; inters_i<6; inters_i++) { |
if( inters_i != last_hit) { |
if( sides[inters_i]->TestIntersection(&vec1, ray1) ) break; |
} |
} |
points[n_odb] = vec1; |
if(inters_i == 0) { |
fate = backreflected; |
break;} // backreflection |
|
propagation = sides[inters_i]->PropagateRay(ray0, &ray1, &vec1); |
if(inters_i == 5) { // successfull exit |
fate = hitExit; |
//hout->Fill(vec1.y(), vec1.z()); |
//hnodb_exit->Fill(n_odb-1); |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break; |
} |
if(propagation == 1) { |
fate = noreflection; //at side |
n_odb++; |
points[n_odb] = vec1; |
ray0 = ray1; |
break;} // no total reflection when should be |
|
if(propagation == -2) { |
fate = noreflection; |
break; |
} // absorption due to finite reflectivity |
|
last_hit = inters_i; |
} |
} |
|
*n_points = n_odb+1; |
*out = ray0; |
return fate; |
}; |
//=============================================================================================================================== <<<<<<<< |
|